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Improved Definite Integral Method for Directly Calculating Modal Frequencies
of Multiple Time Delayed Systems "
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Abstract The eigenvalues of a time-delay system are infinite, and exhibit complex distributions. The
classical definite integral method is an effective approach for analyzing the stability of multi-time-delay
systems. However, it cannot directly solve the modal frequencies, i. e. , the imaginary parts of the ei-
genvalues of the system, and instead requires first determining the real parts and then applying addition-
al techniques, such as two-dimensional Newton iteration to solve the modal frequencies. For most stable
systems, modal frequency is often of greater concern, and indirect determination introduces unnecessary
steps and increases computational complexity. Therefore, this article extends the definite integral meth-
od by using a new integration path and a new characteristic root translation direction, which can directly
solve the modal frequency of time-delay systems, while retaining the advantages of the classical definite
integral method, such as being suitable for multi time-delay systems, simple programming, and high ef-
ficiency. The paper verifies the wide applicability and the effectiveness of the proposed method for calcu-

lating the modal frequencies of time-delay systems through two engineering examples.
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