95 23 %5 6 1 o L5 HE E R Vol. 23 No. 6

2025 4% 6 JOURNAL OF DYNAMICS AND CONTROL Jun. 2025

LB Y5 :1672-6553-2025-23(6)-009-010 DOI1:10.6052/1672-6553-2025-026

% [ 5% T LR F0 5 M R 1 B Th RE Bk
J:T:Eaémﬂé%ﬁ%lb\ \H'/fj_-j'gﬁ*ﬁ*

X EwE Em

(BrE R ARSI, ¥rrg 250022)

HE RSCEY TR E N F B H % K Winkler-Pasternak 25 #i 1 29 55 04 /Y T fig B BE 446 (FGMD
JEHL AR BERERL F ST T & S 808 — AT o B 5 . 3% T 0 5 SR AR S IR B I 25 5 RICHL — A1 5% R A
BT FGM 3 49 2K B2 ) 42 ] O B 0 01 55 S 0. R0 A8 B o B0 R JF ok, A 30 T LR R L A Ak B B T oy
SN e BT R, T VR AR S AT TORE BE R B AR AR R g (TR A R S 8L B Winkler-Pasternak 2804 FGM JE L 44
K GELEHE B AR | f ORI W 0 R e ML BIF T 2 T B AR BORN Bk AR R ) b R 4 S Ehe R R
T Winkler-Pasternak 2% I i £ B2 0 /)N 5 B 5 A0 B2 15 25000 184 0K, H0 25 I BE Ul /) 5 47140 286 e, s 36 K
R BB P B A TR B 2 i 2550 R 48 R O 40 e B 8 i /)

XEEW  IIREMEA R, EARAURE, WA, LMEERL. - WmATh

FES2ES:0341.1 MRS A

Static Bending Behavior Analysis of Functional Gradient Piezoelectric
Nanobeams Considering Surface Effects and
High-order Electric Fields"

Liu Baigiang Wang Peng’

(School of Civil Engineering and Architecture, University of Jinan, Jinan 250022, China)

Abstract This paper establishes a functionally graded material (FGM) piezoelectric nanobeam model
that considers surface effects, higher-order electric fields, and Winkler-Pasternak elastic foundation con-
straints, investigating the influence of various parameters on its force-electric behavior. Based on Hamil-
ton’s variational principle and the Euler-Bernoulli beam model, the governing equations and boundary
conditions of the FGM piezoelectric nanobeam are derived. By employing the Fourier series expansion
method, analytical solutions for deflection, polarization intensity, and electric potential are obtained.
The effects of gradient index, residual stress, surface material parameters, and Winkler-Pasternak pa-
rameters on the deflection, polarization intensity, electric potential, and bending stiffness of the FGM
piezoelectric nanobeam are analyzed in detail. The study reveals that an increase in the gradient index and
residual stress leads to greater deflection, while an increase in the Winkler-Pasternak parameters reduces
deflection. As the gradient index increases, the bending stiffness decreases. Furthermore, polarization
intensity increases with external load and applied voltage but decreases with increasing gradient index and

thickness.
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