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The Arbitrary Order Gauss Principle of Relative Motion Dynamics”
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Abstract The arbitrary order Gauss principle of relative motion dynamics is studied. Firstly, the concept
of arbitrary order derivative space of relative acceleration is proposed, and the variational rules of
generalized Gauss variation in this space are given. On this basis, the arbitrary order Gauss principle for
dynamics systems in relative motion with two-sided ideal constraints is given from the kinetic equation of
relative motion of particles. By defining the arbitrary order generalized compulsion function, the arbitrary
order Gauss least compulsion principle for dynamics systems in relative motion with two-sided ideal con-
straints is established. Secondly, the arbitrary order Gauss principle of relative motion dynamics in gen-
eralized coordinates is studied, and its Appell form, Lagrange form and Nielsen form are given. Thirdly,
the application of the obtained principle to nonholonomic mechanics is studied. The Gauss least compul-
sion principle and its generalized coordinate form for nonholonomic systems of arbitrary order in relative
motion are given. Finally, we introduce how to establish the motion equations of higher order nonholo-

nomic systems in relative motion by using the Gauss least compulsion principle of arbitrary order.
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