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摘要 研究相对运动动力学的任意阶Gauss原理.首先,提出相对加速度的任意阶导数空间的概念,给出此

空间中广义Gauss变分的变分规则,在此基础上从质点相对运动动力学方程出发,给出双面理想约束系统

相对运动动力学的任意阶Gauss原理.通过定义任意阶广义拘束函数,给出双面理想约束系统相对运动动

力学的任意阶Gauss最小拘束原理.其次,研究广义坐标下相对运动动力学的任意阶Gauss原理,给出了原

理Appell形式、Lagrange形式和Nielsen形式.然后,研究了所得原理对非完整力学的应用,给出了任意阶非

完整系统相对运动的Gauss最小拘束原理及其广义坐标形式.最后,结合具体算例介绍如何利用相对运动

的任意阶Gauss最小拘束原理建立高阶非完整系统的运动方程.
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Abstract The
 

arbitrary
 

order
 

Gauss
 

principle
 

of
 

relative
 

motion
 

dynamics
 

is
 

studied.Firstly,
 

the
 

concept
 

of
 

arbitrary
 

order
 

derivative
 

space
 

of
 

relative
 

acceleration
 

is
 

proposed,
 

and
 

the
 

variational
 

rules
 

of
 

generalized
 

Gauss
 

variation
 

in
 

this
 

space
 

are
 

given.On
 

this
 

basis,
 

the
 

arbitrary
 

order
 

Gauss
 

principle
 

for
 

dynamics
 

systems
 

in
 

relative
 

motion
 

with
 

two-sided
 

ideal
 

constraints
 

is
 

given
 

from
 

the
 

kinetic
 

equation
 

of
 

relative
 

motion
 

of
 

particles.By
 

defining
 

the
 

arbitrary
 

order
 

generalized
 

compulsion
 

function,
 

the
 

arbitrary
 

order
 

Gauss
 

least
 

compulsion
 

principle
 

for
 

dynamics
 

systems
 

in
 

relative
 

motion
 

with
 

two-sided
 

ideal
 

con-
straints

 

is
 

established.Secondly,
 

the
 

arbitrary
 

order
 

Gauss
 

principle
 

of
 

relative
 

motion
 

dynamics
 

in
 

gen-
eralized

 

coordinates
 

is
 

studied,
 

and
 

its
 

Appell
 

form,
 

Lagrange
 

form
 

and
 

Nielsen
 

form
 

are
 

given.Thirdly,
 

the
 

application
 

of
 

the
 

obtained
 

principle
 

to
 

nonholonomic
 

mechanics
 

is
 

studied.The
 

Gauss
 

least
 

compul-
sion

 

principle
 

and
 

its
 

generalized
 

coordinate
 

form
 

for
 

nonholonomic
 

systems
 

of
 

arbitrary
 

order
 

in
 

relative
 

motion
 

are
 

given.Finally,
 

we
 

introduce
 

how
 

to
 

establish
 

the
 

motion
 

equations
 

of
 

higher
 

order
 

nonholo-
nomic

 

systems
 

in
 

relative
 

motion
 

by
 

using
 

the
 

Gauss
 

least
 

compulsion
 

principle
 

of
 

arbitrary
 

order.
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引言
  

力学系统的运动可在绝对坐标系,也可在动坐

标系中研究,在动坐标系中的动力学称为相对运动

动力学[1].相对运动动力学理论在工程实际中有着

广泛应用前景.如:航天器轨道动力学[2,3]、舰载稳

定平台[4]、岩土工程[5]等.用分析力学的理论与方

法研究力学系统的相对运动动力学,不仅可在表现

形式上达到统一,而且对复杂系统显示出优越

性[5].Whittaker研究了受匀速转动约束的完整系

统的Lagrange方程[6].1961年,Lur􀆶e给出完整系

统的相对运动动力学方程[7].梅凤翔将文献[6,7]

的结果推广到非完整系统[8,9].近年来,相对运动动

力学的研究取得了重要进展,如:对称性[10-14]、稳定

性[15-17]、Poisson理 论 和 积 分 方 法[18,19]、梯 度 表

示[20]等.

Gauss原理,又称 Gauss最小拘束原理,是分

析力学的普遍微分变分原理之一[21].Gauss原理是

一个极值原理,即质点系的拘束函数的Gauss变分

等于零,其中拘束函数表示真实运动偏离自由运动

的一种度量[22,23].利用 Gauss最小拘束原理可以

直接通过求函数极值的方法获得质点系的运动规

律.因此,Gauss原理在工程问题的动力学建模以

及近似计算等方面发挥其独特作用[24],例如:机器

人动力学[25]、多体系统动力学[26-29]、超细长弹性杆

动力学[30,31]以及混合动力学问题[32]等.最近,我们

研究了Gauss最小拘束原理的若干推广,如变质量

力学[33]、变加速动力学[34]、相对运动动力学[35].
  

文章将研究相对运动动力学的任意阶 Gauss
原理,其结构安排如下:第1节,提出相对加速度的

任意阶导数空间的概念,定义广义Gauss变分,由

此从质点相对运动动力学方程出发,建立相对运动

动力学的任意阶Gauss原理.第2节,定义任意阶

广义拘束函数,证明相对运动动力学的任意阶

Gauss最小拘束原理.第3节,研究广义坐标下任

意阶Gauss最小拘束原理,给出原理的 Appell形

式,Lagrange形式和Nielsen形式.第4节,将所得

任意阶Gauss原理应用于非完整力学,给出任意阶

非完整系统相对运动动力学的Gauss最小拘束原

理.第5节,给出一个具体算例.第6节,文章的

结论.

1 任意阶Gauss原理
  

设力学系统由载体和被载体组成.前者是一个

刚体,在其上固连了动坐标系Ox'y'z';后者是 N
个质点,由广义坐标qs(s=1,2,…,n)描述其相对

于动系的位形.动系Ox'y'z'的角速度ω 以及原点

O 的加速度aO 均为已知函数.第i个质点相对运动

的动力学方程为[1]

-mir
··􀮨'i+Fi+FI

ei+FI
ci+Ni=0

(i=1,2,…,N) (1)

其中mi 是质量;r··􀮨'i 是相对加速度,即在动系中的

位置矢径r'i =r'i(qs,t)对时间t 的二阶相对导

数[36];FI
ei=-miaO -miω

·
×r'i-miω×(ω×r'i)

为牵连惯性力,FI
ci=-2miω ×r

·􀮨'i 为科氏惯性力,

Fi 是主动力,Ni 是约束反力.
  

用 r'i

(m+2)􀮨
表示相对加速度的m 阶相对导数,由

此所张成的空间定义为相对加速度的m 阶导数空

间E(m+2)
r .此空间中,虚位移记为δGm r'i

(m+2)􀮨
,其中

δGm(·)称为第m 阶广义Gauss变分,其变分规则为

δGmt=0,
 

δGm r'i

(m-j+1)􀮨
=0,

 

δGmr'i

(m+2)􀮨
≠0

(m=0,1,2,…;j=0,1,…,m+1) (2)
  

由方程(1),可得

∑
N

i=1

(-mir
··􀮨'i+Fi+FIei+FIci+Ni)·δGmr'i

(m+2)􀮨
=0

(3)
在E(m+2)

r 空间,理想约束条件给出

∑
N

i=1
Ni·δGmr'i

(m+2)􀮨
=0 (4)

于是,式(3)给出

∑
N

i=1

(-mir
··􀮨'i+Fi+FI

ei+FI
ci)·δGmr'i

(m+2)􀮨
=0

(5)
式(5)为相对运动动力学的任意阶Gauss原理.当

m=0时,原理(5)成为

∑
N

i=1

(-mir
··􀮨'i+Fi+FI

ei+FI
ci)·δGr

··􀮨'i=0(6)

式(6)是经典意义 下 相 对 运 动 动 力 学 的 Gauss
原理[35].

2 任意阶Gauss最小拘束原理
  

定义

2
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Zrm =
dm

dtm

􀮨
∑
N

i=1

1
2mi r··􀮨'i-

Fi+FIei+FIci
mi  

2

  
(7)

为相对运动动力学的任意阶广义拘束函数,其中

(·)􀮨 表示求相对导数[34].展开式(7),得到

  Zrm =

1
2∑

N

i=1
mir

··􀮨'i·r
··􀮨'i-∑

N

i=1

(Fi+FI
ei+FI

ci)·r
··􀮨'i+… for m=0

∑
N

i=1
mir

··􀮨'i·r'i

(m+2)􀮨
-∑

N

i=1

(Fi+FI
ei+FI

ci)·r'i

(m+2)􀮨
+… for m=1,2,…

􀮠

􀮢

􀮡

􀪁
􀪁􀪁
􀪁
􀪁

(8)

其中,省略号“…”表示与 r'i

(m+2)􀮨
无关的项.

  

计算第m 阶广义Gauss变分,得到

δGmZrm =∑
N

i=1
mir

··􀮨'i·δGmr'i

(m+2)􀮨
-

 ∑
N

i=1

(Fi+FI
ei+FI

ci)·δGmr'i

(m+2)􀮨
(9)

于是原理(6)成为

δGmZrm =0 (10)
  

假设在E(m+2)
r 空间中,r'i

(m+2)􀮨
是质点真实运动的

相对加速度,而r'i

(m+2)􀮨
+δGmr'i

(m+2)􀮨
是约束允许的可能运

动的相对加速度,则它们的广义拘束函数之差

ΔZrm 计算如下:当m=0时,有

 ΔZrm =
1
2∑

N

i=1
mi(r

··􀮨'i+δGr
··􀮨'i)2-∑

N

i=1

(Fi+FIei+FIci)·

 (r··􀮨'i+δGr
··􀮨'i)-

1
2∑

N

i=1
mir

··􀮨'i·r
··􀮨'i+

 ∑
N

i=1

(Fi+FI
ei+FI

ci)·r
··􀮨'i

=
1
2∑

N

i=1
mi(δGr

··􀮨'i)2 >0 (11)

当m ≥1时,有

ΔZrm =∑
N

i=1
mir

··􀮨'i·(r'i

(m+2)􀮨
+δGmr'i

(m+2)􀮨
)-

∑
N

i=1

(Fi+FI
ei+FI

ci)·(r'i

(m+2)􀮨
+δGmr'i

(m+2)􀮨
)-

∑
N

i=1
mir

··􀮨'i·r'i

(m+2)􀮨
+∑

N

i=1

(Fi+FI
ei+FI

ci)·r'i

(m+2)􀮨

 =∑
N

i=1
mir

··􀮨'i·δGmr'i

(m+2)􀮨
-∑

N

i=1

(Fi+FIei+FIci)·δGmr'i

(m+2)􀮨

 =0 (12)

因此,式(10)表明:
 

对于具有双面理想约束的

力学系统,
 

在每一瞬时,E(m+2)
r 空间中所有与约束

相容的可能运动的相对加速度之中,真实运动的相

对加速度使广义拘束 函 数 Zrm 在 第 m 阶 广 义

Gauss变分下取得极值.
  

式(10)可 称 为 相 对 运 动 动 力 学 的 任 意 阶

Gauss最小拘束原理.
  

如果m=0,则原理(10)成为经典意义下相对

运动的Gauss最小拘束原理[35].
  

如果m=0,且a0=0,ω=0,则原理(10)退化

为经 典 意 义 下 绝 对 运 动 的 Gauss 最 小 拘 束

原理[21].

3 广义坐标下任意阶Gauss原理
  

将矢径r'i=r'i(qs,t)对时间求(m +2)阶相

对导数,得到

r'i

(m+2)􀮨
=∑

n

s=1

∂r'i

∂qs
qs
(m+2)

+… (13)

则有

δGmr'i

(m+2)􀮨
=∑

n

s=1

∂r'i

∂qs
δGm qs

(m+2) (14)
  

引入相对运动的加速度能量

Sr=
1
2∑

N

i=1
mir

··􀮨'i·r
··􀮨'i (15)

对时间求m 阶导数,m≥1,得

Sr

(m)

=∑
N

i=1
mir

··􀮨'i·r'i

(m+2)􀮨
+… (16)

 

则广义拘束函数(8)可表示为

Zrm =Sr

(m)

-∑
N

i=1

(Fi+FI
ei+FI

ci)·r'i

(m+2)􀮨
+…

(m=0,1,2,…) (17)
对式(17)求广义Gauss变分,得

δGmZrm =δGmSr

(m)

-∑
N

i=1

(Fi+FI
ei+FI

ci)·

 δGmr'i

(m+2)􀮨
(18)

注意到

δGmSr

(m)

=∑
n

s=1

∂Sr

(m)

∂qs
(m+2)δGm qs

(m+2) (19)

由式(16),得

∂Sr

(m)

∂qs
(m+2)=∑

N

i=1
mir

··􀮨'i·
∂r'i

(m+2)􀮨

∂qs
(m+2)=∑

N

i=1
mir

··􀮨'i·
∂r'i

∂qs

(20)

3
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因此有

δGmSr

(m)

=∑
n

s=1
∑
N

i=1
mir

··􀮨'i·
∂r'i

∂qs
δGm qs

(m+2) (21)

又易知

∑
N

i=1

(Fi+FI
ei+FI

ci)·δGmr'i

(m+2)􀮨

 =∑
n

s=1
Qs -

∂
∂qs
(Πo +Πω)+Qω·

s +Γs
􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 δGm qs
(m+2)

(22)

其中Qs 为广义力,有

Qs =∑
N

i=1
Fi·

∂r'i

∂qs
(23)

Πo 为均匀力场势能,有

Πo =∑
N

i=1
miaO·r'i=MaO·r'C (24)

Πω 为离心力势能,有

Πω =
1
2∑

N

i=1
mi[ω×(ω×r'i)]·r'i

 = -
1
2ω
·θo·ω (25)

Qω·
s 为广义旋转惯性力,有

Qω·
s =-∑

N

i=1
mi(ω

·
×r'i)·

∂r'i

∂qs
(26)

Γs 为广义陀螺力,有

Γs =-∑
N

i=1
2mi(ω ×r

·'i
􀮨)·∂r'i

∂qs
(27)

式(25)中θo =∑
N

i=1
mi (r'i)2E-r'ir'i  为 惯 性

张量[1].
  

将式(19)和(22)代入式(18),得

δGmZrm =∑
n

s=1

∂Sr

(m)

∂qs
(m+2)-Qs +

􀭠
􀭡

􀪁
􀪁􀪁

 ∂
∂qs
(Πo +Πω)-Qω·

s -Γs
􀭤
􀭥

􀪁􀪁 ·δGm qs
(m+2) (28)

于是,原理(10)可表为

 ∑
n

s=1

∂Sr
(m)

∂qs
(m+2)-Qs+

∂
∂qs
(Πo +Πω)-Qω·

s -Γs
􀭠
􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 ·

 δGm qs
(m+2)

=0 (29)

式(29)称为广义坐标下相对运动的任意阶Gauss
原理的Appell形式.

  

容易证明

∑
N

i=1
mir

··􀮨'i·
∂r'i

∂qs
=
d
dt
∂Tr

(m+1)

∂qs
(m+2)-

∂Tr

∂qs

 =(m+2)
∂
∂qs
(m+2)

d
dtTr

(m+1)

-(m+3)
∂Tr

(m+1)

∂qs
(m+1)

(30)

其中Tr=
1
2∑

N

i=1
mir

·'i
􀮨·r·'i
􀮨为相对运动动能,则原理

(10)又可表示为Lagrange形式

∑
n

s=1

d
dt
∂Tr

(m+1)

∂qs
(m+2)-

∂Tr

∂qs
-Qs +

􀭠
􀭡

􀪁
􀪁􀪁

 ∂
∂qs
(Πo +Πω)-Qω·

s -Γs
􀭤
􀭥

􀪁􀪁 δGm qs
(m+2)

=0

(31)

Nielsen形式

 ∑
n

s=1

(m+2)
∂
∂qs
(m+2)

d
dtTr

(m+1)

-(m+3)
∂Tr

(m+1)

∂qs
(m+1)-

􀭠
􀭡

􀪁
􀪁􀪁

Qs +
∂
∂qs
(Πo +Πω)-Qω·

s -Γs
􀭤
􀭥

􀪁􀪁 δGm qs
(m+2)

=0

(32)

4 对非完整力学的推广
  

假设系统受到g 个理想(m+2)阶非完整约束

φ
(m+2)
β =φβ(qs,q

·
s,…,qs

(m+2),t)=0
(β=1,2,…,g) (33)

它们加在E(m+2)
r 空间的虚位移δGmqs

(m+2)上的限制条

件为

∑
n

s=1

∂φ
(m+2)
β

∂qs
(m+2)δGm qs

(m+2)
=0 (34)

  

构造函数

Zφm =Zrm -∑
g

β=1
λβφ

(m+2)
β (35)

其中λβ =λβ(qs,q
·
s,…,qs

(m+1),t)是Lagrange乘子.

显然,在E(m+2)
r 空间,有δGmλβ =0.

  

将式(17)代入式(35),有

Zφm =Sr

(m)

-∑
N

i=1

(Fi+FI
ei+FI

ci)·r'i

(m+2)􀮨
-

 ∑
g

β=1
λβφ

(m+2)
β +… (m=0,1,2,…) (36)

式(36)可称为任意阶非完整系统相对运动的广义

拘束函数.
  

对式(36)计算广义Gauss变分,得到

δGmZφm =∑
N

i=1
mir

··􀮨'i·δGmr'i

(m+2)􀮨
-

 ∑
N

i=1

(Fi+FI
ei+FI

ci)·δGmr'i

(m+2)􀮨
-

4
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 ∑
g

β=1
λβ∑

n

s=1

∂φ
(m+2)
β

∂qs
(m+2)δGm qs

(m+2) (37)

将式(10)和式(34)代入式(37),得

δGmZφm =0 (38)

式(38)可 称 为 任 意 阶 非 完 整 系 统 相 对 运 动 的

Gauss最小拘束原理.
  

类似地,原理(38)可表示为Appell形式

∑
n

s=1

∂Sr

(m)

∂qs
(m+2)-Qs +

∂
∂qs
(Πo +Πω)-

􀭠
􀭡

􀪁
􀪁􀪁

 Qω·
s -Γs -∑

g

β=1
λβ
∂φ

(m+2)
β

∂qs
(m+2)

􀭤
􀭥

􀪁
􀪁􀪁 δGm qs

(m+2)
=0

(39)

Lagrange形式

∑
n

s=1

d
dt
∂Tr

(m+1)

∂qs
(m+2)-

∂Tr

∂qs
-Qs +

∂
∂qs
(Πo +Πω)-

􀭠
􀭡

􀪁
􀪁􀪁

 Qω·
s -Γs -∑

g

β=1
λβ
∂φ

(m+2)
β

∂qs
(m+2)

􀭤
􀭥

􀪁
􀪁􀪁 δGm qs

(m+2)
=0(40)

Nielsen形式

 ∑
n

s=1

(m+2)
∂
∂qs
(m+2)
d
dtTr

(m+1)

-(m+3)
∂Tr
(m+1)

∂qs
(m+1)-

􀭠
􀭡

􀪁
􀪁􀪁

Qs +
∂
∂qs
(Πo +Πω)-Qω·

s -

Γs -∑
g

β=1
λβ
∂φ

(m+2)
β

∂qs
(m+2)

􀭤
􀭥

􀪁
􀪁􀪁 δGm qs

(m+2)
=0 (41)

5 算例
  

例1 质量为 M 的质点在某平面上运动,而
平面以极其缓慢的角速度ω 绕与其垂直的中心轴

作匀速转动[37].设质点相对于转动平面的运动用

广义坐标q1 和q2 来确定,且受非完整约束[38]

φ
(3)=q

··
1q1
(3)

+gq2
(3)

=0 (42)

而质点相对运动的加速度能量为

Sr=
1
2M(q

··2
1+q

··2
2) (43)

试用Gauss最小拘束原理建立系统相对运动的动

力学方程.
  

解: 由题设,载体作定轴转动,aO =0,ω 是

常矢量,质点的相对矢径为r'=q1i'+q2j',设主动

力F =F1i' +F2j',其 中i',j',k' 是 沿 动 系

Ox'y'z'三个坐标轴的单位矢量.则相对速度为

r·'􀮨=q
·
1i'+q

·
2j' (44)

牵连惯性力为

FI
e=-MaO -Mω· ×r'-Mω ×(ω ×r')

 =Mω2(q1i'+q2j') (45)
科氏惯性力为

FI
c=-2Mω ×r

·'􀮨=2Mω(q
·
2i'-q

·
1j') (46)

由式(35),广义拘束函数Zφ1 为

Zφ1=
dSr

dt -(F+FI
e+FI

c)·r'
(3)􀮨

-λφ
(3)+…

(47)
将式(43)、式(45)、式(46)和约束方程(42)代入式

(47),得

Zφ1=Mq
··
1q1
(3)

+Mq
··
2q2
(3)

-(F1+Mω2q1+

 2Mωq
·
2)q1

(3)
-(F2+Mω2q2-2Mωq

·
1)q2

(3)
-

 λ(q
··
1q1
(3)

+gq2
(3))+… (48)

计算1阶广义Gauss变分,并令其等于0,得到

δG1Zφ1=[Mq
··
1-(F1+Mω2q1+2Mωq

·
2)-

 λq
··
1]δG1q1

(3)
+[Mq

··
2-(F2+Mω2q2-

 2Mωq
·
1)-λg]δG1q2

(3)
=0 (49)

由Lagrange乘子法,从式(49)得

Mq
··
1-(F1+Mω2q1+2Mωq

·
2)-λq

··
1=0

Mq
··
2-(F2+Mω2q2-2Mωq

·
1)-λg=0

(50)
由方程(42)和方程(50)可解出系统的运动.
  

原理式(49)也可利用式(39)建立.由式(23),得

Q1=F1, Q2=F2 (51)
由式(24)和式(26),得

Πo =Qω·
1 =Qω·

2 =0 (52)
而离心力势能(25),给出

Πω =-
1
2Mω2(q21+q22) (53)

广义陀螺力为

Γ1=2Mωq
·
2, Γ2=-2Mωq

·
1 (54)

将式(42)、式(43)、式(51)~(54)代入式(39),可以

得到

(Mq
··
1-F1-Mω2q1-2Mωq

·
2-λq

··
1)δG1q1

(3)
+

 (Mq
··
2-F2-Mω2q2+2Mωq

·
1-λg)δG1q2

(3)

 =0 (55)
这是所论三阶非完整系统相对运动的 Gauss

最小拘束原理.

6 结论

利用分析力学方法研究复杂系统的相对运动

5
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动力学不仅具有表现形式上的统一性,而且显示出

分析力学在解决复杂系统动力学问题上的优越性.
不同于d􀆶Alembert-Lagrange原理和Jourdain原

理,Gauss原理是极值原理,由此可直接获得质点

系的运动.文章的主要贡献:
  

(1)提 出 了 相 对 加 速 度 的 m 阶 导 数 空 间

E(m+2)
r 和广义Gauss变分的概念,建立了相对运动

动力学的任意阶Gauss原理及其最小拘束原理.定
义相对运动动力学的广义拘束函数,证明了在

E(m+2)
r 空间中质点的真实运动使广义拘束函数在

广义Gauss变分下取得极值.
  

(2)导出了相对运动动力学的任意阶Gauss原

理的广义坐标形式.通过引入相对运动的加速度能

量,给出了广义拘束函数的显形式,建立了三类任

意阶Gauss原理,即 Appell、Lagrange和 Nielsen
类型.

  

(3)研究了最小拘束原理对任意阶非完整约束

系统的应用.引进Lagrange乘子,将非完整约束嵌

入广义拘束函数之中,利用E(m+2)
r 空间中非完整

约束对虚位移的限制条件,建立了任意阶非完整系

统相对运动的Gauss最小拘束原理.
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