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Abstract The non-reciprocity of energy transfer, particularly strong non-reciprocity, achieved within a
wider range of excitation parameters, can enhance the performance of non-reciprocal devices. The influ-
ences of bistable elements on the energy transfer mode and the modulation of non-reciprocity are investi-
gated. Initially, the dynamic equation for a system incorporating linear stiffness, cubic stiffness, and bi-
stable components is derived. The semi-analytical solutions for this system are obtained using the com-
plexification-averaging and least square methods. The numerical solutions are obtained via the Runge-
Kutta method. Then, the accuracy of the analysis procedure is confirmed through a comparison of semi-
analytical and numerical solutions. Building on this, the non-reciprocal characteristics of the system un-

der harmonic excitation and the effects of excitation amplitude are analyzed. The results show that re-
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gardless of the presence of the bistable component, the nonlinear system undergoes a transition from the
reciprocal to a non-reciprocal state and then back to the reciprocal state. However, the bistable compo-
nent significantly alters the non-reciprocal characteristics. Furthermore, it is found that an appropriate

negative stiffness in the bistable system can effectively decrease the excitation amplitude threshold for ac-

tivating the non-reciprocal state.

Key words bistable component,
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Fig. 1 Mechanical model of a nonlinear system
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Fig. 2 Frequency responses of the purely nonlinear system,
f1=0.005, f,=0.005. (a) Frequency responses of the left
oscillator when the right oscillator is excited; (b) Frequency
responses of the right oscillator when the left oscillator is excited
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Fig. 3 Frequency responses of the purely nonlinear system,
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