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Abstract This paper proposes a novel stability criterion for non-autonomous generalized Birkhoff sys-
tems based on triple combined gradient system framework. Firstly, the differential equations and funda-
mental properties of four distinct gradient systems and their corresponding triple combined gradient sys-
tems are systematically discussed. Secondly, for the governing differential equations of non-autonomous
generalized Birkhoff systems, a representation method based on matrix combinations is proposed, estab-
lishing four different forms of triple combined gradient representations. On this basis, the Lyapunov
function can be directly derived from the corresponding triple combined gradient representation equations
via given matrix combinations, thereby simplifying the stability determination process. Compared with
existing methods, the proposed approach significantly reduces the difficulty associated with constructing
Lyapunov functions, providing an effective tool for studying the stability of non-autonomous generalized
Birkhoff systems. Finally, the validity and accuracy of the proposed method are verified through stability

analysis and numerical simulations of representative examples.
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Fig. 7 Numerical simulation results of state variables for example 4
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