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摘要 本文提出了一种基于三重组合梯度系统的非自治广义Birkhoff系统稳定性判定新方法.首先,系统

讨论四类梯度系统与三重组合梯度系统的微分方程及其基本性质;其次,针对非自治广义Birkhoff系统的

运动微分方程,
 

提出基于矩阵组合的四类三重组合梯度表示方法.在此基础上,可通过给定的矩阵组合,
 

直

接用对应的三重组合梯度表示方程求解Lyapunov函数,从而简化稳定性的判定过程.与现有方法相比,所

提方法显著降低了Lyapunov函数构造的难度,为研究非自治广义Birkhoff系统稳定性提供了有效工具.最

后,通过典型算例的稳定性研究和数值模拟验证了所提方法的有效性和准确性.
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Abstract This
 

paper
 

proposes
 

a
 

novel
 

stability
 

criterion
 

for
 

non-autonomous
 

generalized
 

Birkhoff
 

sys-
tems

 

based
 

on
 

triple
 

combined
 

gradient
 

system
 

framework.
 

Firstly,
 

the
 

differential
 

equations
 

and
 

funda-
mental

 

properties
 

of
 

four
 

distinct
 

gradient
 

systems
 

and
 

their
 

corresponding
 

triple
 

combined
 

gradient
 

sys-
tems

 

are
 

systematically
 

discussed.
 

Secondly,
 

for
 

the
 

governing
 

differential
 

equations
 

of
 

non-autonomous
 

generalized
 

Birkhoff
 

systems,
 

a
 

representation
 

method
 

based
 

on
 

matrix
 

combinations
 

is
 

proposed,
 

estab-
lishing

 

four
 

different
 

forms
 

of
 

triple
 

combined
 

gradient
 

representations.
 

On
 

this
 

basis,
 

the
 

Lyapunov
 

function
 

can
 

be
 

directly
 

derived
 

from
 

the
 

corresponding
 

triple
 

combined
 

gradient
 

representation
 

equations
 

via
 

given
 

matrix
 

combinations,
 

thereby
 

simplifying
 

the
 

stability
 

determination
 

process.
 

Compared
 

with
 

existing
 

methods,
 

the
 

proposed
 

approach
 

significantly
 

reduces
 

the
 

difficulty
 

associated
 

with
 

constructing
 

Lyapunov
 

functions,
 

providing
 

an
 

effective
 

tool
 

for
 

studying
 

the
 

stability
 

of
 

non-autonomous
 

generalized
 

Birkhoff
 

systems.
 

Finally,
 

the
 

validity
 

and
 

accuracy
 

of
 

the
 

proposed
 

method
 

are
 

verified
 

through
 

stability
 

analysis
 

and
 

numerical
 

simulations
 

of
 

representative
 

examples.
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引言
  

1927年,Birkhoff在《动力学系统》中提出了一

种更为普遍的动力学方程[1],随后,美国物理学家

Santilli在1978年的著作中将其命名为Birkhoff
方程,并将其推广至非自治、非保守系统[2,3].此后,
我国数学力学家梅凤翔教授进一步完善了该理论,
建立了广义Birkhoff系统动力学的基本框架[4-8].
近年来,Birkhoff系统动力学的研究取得了显著

进展[9-13].
在

 

Birkhoff
 

系统的设计与优化中,稳定性分

析是确保其可靠运行的理论依据.梯度系统是研究

微分方程和动力学系统的重要工具,
 

它避免了直

接构造Lyapunov
 

函数的困难,
 

是研究约束力学系

统稳定性的一种有效方法.若一个力学系统可化为

梯度系统,则可由梯度系统的特性来研究系统的稳

定性[14,15].文献[16-23]利用梯度系统方法对
 

Birk-
hoff

 

系统和广义
 

Birkhoff
 

系统的稳定性进行了研

究.组合梯度系统是由几类基本梯度系统组合起来

构成的,更适合研究复杂力学系统的动力学性质,
但目前对于组合梯度系统方面的研究较少.梅凤

翔、吴惠彬等给出6类组合梯度系统的定义和微分

方程,并利用组合梯度方法研究广义Birkhoff系统

和非自治Birkhoff系统的稳定性[24-27].王嘉航、董
孟峰等给出4类三重组合梯度系统的定义和微分

方程,借助三重组合梯度系统研究广义Birkhoff系

统的稳定性[28,29].
  

本文首次将三重组合梯度系统方法引入非自

治广义Birkhoff系统的稳定性分析中,创新性地采

用矩阵组合来描述系统的四类三重组合梯度方程.
基于这一方法,通过识别给定矩阵组合的类型,即
可构造相应的Lyapunov函数,从而有效研究非自

治广义Birkhoff系统零解的稳定性问题.为验证理

论结果的正确性,文中给出了具体算例并辅以数值

模拟进行验证.

1 梯度系统

1.1 四类基本梯度系统

对于微分方程[14]

x·i=hij(X)
∂V(X)
∂xj

 (i,j=1,2,…,m)(1)

其中X=(x1,x2,…,xm),V=V(X)称为势函数,这

里及以后同一项中相同的活动指标表示对其求和.
若函数V 是系统(1)的一个Lyapunov函数,有

V
·
=
∂V
∂xi

hij(X)
∂V
∂xj

(2)

则系统的稳定性可由函数V 与V
·

判定[30],其关系

如下表所示:

表1 系统稳定性的判定方法

Table
 

1 Methods
 

for
 

determining
 

system
 

stability

V =V(X) V
·
=V

·(X) 系统稳定性

正定 半负定 稳定

正定且具有无穷小上界 半负定 一致稳定

正定且具有无穷小上界 负定 一致渐近稳定

其中,若V(X)具有无穷小上界,则有正定函数

W(X),使得 V(X)≤W(X)

定义1 若矩阵[hij(X)]为负单位矩阵,则微分方

程(1)可化为通常梯度系统的微分方程:
 

x·i=-
∂V
∂xi

 (i=1,2,…,m) (3)

此时,根据式(2)可知

V
·
=-

∂V
∂xi

∂V
∂xi

(4)

定义2 若 矩 阵 [hij(X)]=[bij(X)],且 矩 阵

[bij(X)]是反对称的,即有bij =-bji ,则微分方

程(1)可化为斜梯度系统的微分方程:

x·i=bij(X)
∂V
∂xj

 (i,j=1,2,…,m) (5)

此时,根据式(2)可知

V
·
=
∂V
∂xi

bij
∂V
∂xj

(6)

因(bij)为反对称矩阵,由其性质

X(bij)XT=0 (7)

则有

V
·
=0

定义3 若矩阵 [hij(X)]=[Sij(X)],且 矩 阵

[Sij(X)]为对称负定的,则微分方程(1)可化为具

有对称负定矩阵的梯度系统的微分方程:

x·i=Sij(X)
∂V
∂xj

 (i,j=1,2,…,m) (8)

此时,根据式(2)可知

V
·
=
∂V
∂xi

Sij
∂V
∂xj

(9)

定义4 若矩 阵 [hij(X)]=[aij(X)],且 矩 阵

2
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[aij(X)]为半负定的,则微分方程(1)可化为具有

半负定矩阵的梯度系统的微分方程:

x·i=aij(X)
∂V
∂xj

 (i,j=1,2,…,m)
 

(10)

此时,根据式(2)可知

V
·
=
∂V
∂xi

aij
∂V
∂xj

(11)

由上面定义可将四类基本梯度系统对应的矩

阵及V
·

的形式总结成表2.

表2 四类基本梯度系统

Table
 

2 Four
 

basic
 

gradient
 

systems

序号 名称 [hij(X)]矩阵 V
·

1 通常梯度系统 负单位阵 V
·
= -

∂V
∂xi

∂V
∂xi

2 斜梯度系统 反对称阵[bij(X)] V
·
=0

3
具有对称负定

矩阵的梯度系统
对称负定阵[Sij(X)]V

·
=
∂V
∂xi

Sij
∂V
∂xj

4
具有半负定矩阵

的梯度系统
半负定阵[aij(X)]V

·
=
∂V
∂xi

aij
∂V
∂xj

1.2 四类三重组合梯度系统及其性质

对于微分方程[28,29]

x·i=hij
∂V
∂xj

+kij
∂V
∂xj

+fij
∂V
∂xj

(i,j=1,2,…,m)(12)
其中hij =hij(X),kij =kij(X),fij =fij(X).

若函数V 是Lyapunov函数,由式(2)可知

V
·
=
∂V
∂xi

hij
∂V
∂xj

+
∂V
∂xi

kij
∂V
∂xj

+
∂V
∂xi

fij
∂V
∂xj

(13)

由函数V 与V
·
,参照表1求出可确定系统的稳定性.

 

定义5 若矩阵 (hij)为负单位矩阵,
 

矩阵(kij)=
(Sij)为对称负定矩阵,

 

矩阵(fij)=(bij)为反对称

矩阵,则微分方程(12)可化为三重组合梯度系统

Ⅰ:

x·i=-
∂V
∂xi

+Sij
∂V
∂xj

+bij
∂V
∂xj

(i,j=1,2,…,m)(14)
其中 (Sij)=[Sij(X)],(bij)=[bij(X)].

  

由式(13)与式(7)可求V
·

为

V
·
=-

∂V
∂xi

∂V
∂xi

+
∂V
∂xi

Sij
∂V
∂xj

(15)

定义6 若矩阵 (hij)为负单位矩阵,
 

矩阵(kij)=

(bij)为反对称矩阵,矩阵(fij)=(aij)为半负定矩

阵,则微分方程(12)可化为三重组合梯度系Ⅱ:

x·i=-
∂V
∂xi

+bij
∂V
∂xj

+aij
∂V
∂xj

(i,j=1,2,…,m)(16)
其中 (aij)=[aij(X)].

  

由式(13)与式(7)可求V
·

为
 

V
·
=-

∂V
∂xi

∂V
∂xi

+
∂V
∂xi

aij
∂V
∂xj

(17)

定义7 若矩阵 (hij)为负单位矩阵,
 

矩阵(kij)=
(Sij)为对称负定矩阵,矩阵(fij)=(aij)为半负定

矩阵,则微分方程(12)可化为三重组合梯度系Ⅲ:

x·i=-
∂V
∂xi

+Sij
∂V
∂xj

+aij
∂V
∂xj

(i,j=1,2,…,m)(18)
  

由式(13)可求V
·

为

V
·
=-

∂V
∂xi

∂V
∂xi

+
∂V
∂xi

Sij
∂V
∂xj

+
∂V
∂xi

aij
∂V
∂xj

(19)

定义8 若矩阵 (hij)=(bij)为反对称矩阵,矩阵

(kij)=(Sij)为对称负定矩阵,矩阵(fij)=(aij)为
半负定矩阵,则微分方程(12)可化为三重组合梯

度系Ⅳ:

x·i=bij
∂V
∂xj

+Sij
∂V
∂xj

+aij
∂V
∂xj

(i,j=1,2,…,m)(20)
  

由式(13)与式(7)可求V
·

为

V
·
=
∂V
∂xi

Sij
∂V
∂xj

+
∂V
∂xi

aij
∂V
∂xj

(21)

2 非自治广义Birkhoff系统的三重组合梯

度表示

  

对于广义Birkhoff方程[7]

Ωμνa
·ν -

∂B(t,a)
∂aμ +

∂Rμ(t,a)
∂t

􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 +

 Λμ(t,a)=0 (μ,ν=1,2,…,2n) (22)

其中a =(a1,a2,…,a2n),aμ 为变量,t 为时间,

Rμ =[Rμ(t,a)]为Birkhoff函数组,B=B(t,a)

称为Birkhoff函数,Λμ =Λμ(t,a)为附加项,而

(Ωμν)=
∂Rν

∂aμ -
∂Rμ

∂aν  (23)

当Λμ=0(μ=1,2,…,2n)时,方程(22)为Birkhoff
方程.

3
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若Birkhoff函数B 和Birkhoff函数组Rμ 都

显含时间t,则称系统为非自治的.此时方程(22)为
非自治广义Birkhoff系统的微分方程.

  

假设系统非奇异,则式(22)可写为
  

a·ν =Ωμν ∂B
∂aμ +

∂Rμ

∂t -Λμ  
(μ,ν=1,2,…,2n) (24)

其中

ΩμνΩνρ =δμ
ρ

det(Ωμν)≠0
一般情况下,方程(24)不是梯度系统,也不是

三重组合梯度系统.仅在一定条件下才能转化成为

三重组合梯度系统.这里给出将非自治广义Birk-
hoff系统表示为三重组合梯度系统的定理.
定理: 给定一个矩阵组合 (hμν)=[hμν(t,a)],
(kμν)=[kμν(t,a)],(fμν)=[fμν(t,a)],使其由负

单位矩阵、反对称矩阵、对称负定矩阵或者半负定

矩阵中的任意三个组成,且存在函数V =V(t,a)
满足

V
·
=
∂V
∂t+

∂V
∂xi

hij
∂V
∂xj

+
∂V
∂xi

kij
∂V
∂xj

+

 ∂V∂xi
fij
∂V
∂xj

(25)

且使得非自治广义
 

Birkhoff
 

系统的运动方程(24)

可以表示为方程(12)的形式

Ωμν ∂B
∂aμ +

∂Rμ

∂t -Λμ  =hμν
∂V
∂aν +fμν

∂V
∂aν +

 kμν
∂V
∂aν (μ,ν=1,2,…,2n) (26)

则称该系统具有三重组合梯度系统的表示.
 

当矩阵组合为负单位矩阵、对称负定矩阵、反
对称矩阵时,该系统具有三重组合梯度系统Ⅰ的表

示.则方程(24)可记为

Ωμν ∂B
∂aμ +

∂Rμ

∂t -Λμ  =-
∂V
∂aμ +Sμν

∂V
∂aν +

 bμν
∂V
∂aν (μ,ν=1,2,···,2n) (27)

此时(hμν)为负单位矩阵,(fμν)=[Sμν(t,a)]为对

称负定矩阵,(kμν)=[bμν(t,a)]为反对称矩阵.
  

当矩阵组合为负单位矩阵、反对称矩阵、半负

定矩阵时,该系统具有三重组合梯度系统Ⅱ的表

示.方程(24)可记为

Ωμν ∂B
∂aμ +

∂Rμ

∂t -Λμ  =-
∂V
∂aμ +bμν

∂V
∂aν +

 aμν
∂V
∂aν (μ,ν=1,2,…,2n) (28)

此时 (hμν)为负单位矩阵,
 

(fμν)=[bμν(t,a)]为

反对称矩阵,(kμν)=[aμν(t,a)]为半负定矩阵.
  

当矩阵组合为负单位矩阵、对称负定矩阵、半
负定矩阵时,该系统具有三重组合梯度系统Ⅲ的表

示.方程(24)可记为

Ωμν ∂B
∂aμ +

∂Rμ

∂t -Λμ  =-
∂V
∂aμ +Sμν

∂V
∂aν +

 aμν
∂V
∂aν (μ,ν=1,2,…,2n) (29)

其中 (hμν)为负单位矩阵,
 

(fμν)=[Sμν(t,a)]为

对称负定矩阵,
 

(kμν)=[aμν(t,a)]为半负定矩阵.
  

当矩阵组合为反对称矩阵、对称负定矩阵、半
负定矩阵时,该系统具有三重组合梯度系统Ⅳ的表

示.方程(24)可记为

Ωμν ∂B
∂aμ +

∂Rμ

∂t -Λμ  =bμν
∂V
∂aν +Sμν

∂V
∂aν +

 aμν
∂V
∂aν (μ,ν=1,2,…,2n) (30)

其中 (hμν)=[bμν(t,a)]为反对称矩阵,
 

(fμν)=
[Sμν(t,a)]为对称负定矩阵,

 

(kμν)=[aμν(t,a)]
为半负定矩阵.

  

根据定理,利用三重组合梯度系统方法对非自

治广义Birkhoff系统进行稳定性分析,其主要步骤

如下:
  

步骤1 矩阵组合的选择.选择适当的矩阵组合,
将系统表示为具有三重组合梯度形式;
  

步骤2 势函数及其导数的求解.利用矩阵组合与

非自治广义Birkhoff方程求解势函数V 及其导数

V
·
;

  

步骤3 判定稳定性.根据已求的势函数V 及其导

数V
·
,利用表1结论判定系统稳定性.

3 应用举例

例1 广义Birkhoff系统为

R1=0, R2=a1sint,

B=2a1a2sint+(a1)2sint (31)
附加项为

Λ1=a1sint+5a2sint, Λ2=a1cost+a2sint
(32)

显然,该系统是非自治的.
  

由式(23)可得

4
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 (Ωμν)=
0 sint

-sint 0  ,(Ωμν)=
0 -csct
csct 0  

由方程(24)可得

a·1=-2a1+a2 a·2
 

=a1-3a2 (33)
  

不妨给定一组不含时间t的矩阵组合,使得矩

阵 (hμν)=
-1 0
0 -1  为负单位矩阵,(fμν)=

-1 -1

-1 -5  为对称负定矩阵,(kμν)=
0 1

-1 0  为

反对称矩阵.由定理可知存在函数V =V(t,a)使

得非自治广义
 

Birkhoff
 

系统的运动方程(24)可以

表示为方程(27)的形式
                            

a·1

a·2  = -1 0
0 -1  + -1 -1

-1 -5  +􀭠
􀭡

􀪁
􀪁􀪁

 
0 1

-1 0  􀭤􀭥

􀪁
􀪁􀪁

∂V
∂a1

∂V
∂a2

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁

(34)

此时该系统具有三重组合梯度系统Ⅰ的表示.
结合式(33)和式(34),有

-2a1+a2=-2
∂V
∂a1

a1-3a2=-2
∂V
∂a1-6

∂V
∂a2

(35)

即

∂V
∂a1=a1-

1
2a

2

∂V
∂a2=-

1
2a

1+
2
3a

2 (36)

故可解出

V=
1
2
(a1)2+

1
3
(a2)2-

1
2a

1a2 (37)

显然W(X)=
1
2
(a1)2+

1
3
(a2)2为正定函数,且0<

V≤W(X),所以函数V 正定且具有无穷小上界.

显然此时函数V 中不含时间t,故有∂V
∂t=0

,则

由式(25)求得

V
·
=-

5
2
(a1)2-

5
2
(a2)2+

25
6a

1a2

 =-
5
2
(a1-a2)2-

5
6a

1a2 <0 (38)

从而V
·

负定.由表1可知,系统的零解是一致渐近

稳定的.

为更好地说明系统零解的稳定性,选取不同的

初始条件,对方程(33)和(37)进行数值模拟,得到

系统的状态变量a1、a2 的时间演化曲线和势函数

V 的能量衰减图,如图1和图2所示.由图可知,无
论给予状态变量怎样的初始小扰动,其状态变量和

势函数都会随时间收敛到零解,且收敛特性不受初

始时刻影响,故可判定系统的零解具有一致渐近稳

定性.

图1 算例1状态变量数值模拟结果

Fig.1 Numerical
 

simulation
 

results
 

of
 

state
 

variables
 

for
 

example
 

1

图2 算例1势函数数值模拟结果

Fig.2 Numerical
 

simulation
 

results
 

of
 

the
 

potential
 

function
 

for
 

example
 

1

例2 广义Birkhoff系统为

R1=0, R2=a1sint, B=a1a2sint (39)

附加项为

5
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Λ1=3a1sint+4a2sint, Λ2=a1cost+a2sint
(40)

显然,该系统是非自治的.
   

由式(23)可得

 (Ωμν)=
0 sint

-sint 0  ,(Ωμν)=
0 -csct
csct 0  

由方程(24)可得

a·1=-a1+a2

a·2
 

=-3a1-3a2
(41)

  

不妨给定一组不含时间t的矩阵组合,使得矩

阵 (hμν)=
-1 0
0 -1  为负单位矩阵,(fμν)=

0 1

-1 0  为反对称矩阵,
 

(kμν)=
0 -1

-4 -1  为半

负定矩阵.由定理可知存在函数V=V(t,a)使得

非自治广义
 

Birkhoff
 

系统的运动方程(24)可以表

示为方程(28)的形式

a·1

a·2  = -1 0
0 -1  + 0 1

-1 0  +􀭠
􀭡

􀪁
􀪁􀪁

 
0 -1

-4 -1  􀭤􀭥
􀪁
􀪁􀪁

∂V
∂a1

∂V
∂a2

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁

(42)

此时该系统具有三重组合梯度系统Ⅱ的表示.
结合式(41)和式(42)有

-a1+a2=-
∂V
∂a1

-3a1-3a2=-5
∂V
∂a1-2

∂V
∂a2

(43)

即

∂V
∂a1=a1-a2  ∂V

∂a2=-a1+4a2 (44)

故可解出

V=
1
2
(a1)2+2(a2)2-a1a2 (45)

显然W(X)=(a1)2/2+2(a2)2 为正定函数,
 

0<
V ≤W(X),所以函数V 正定且具有无穷小上界.

显然此时函数V 中不含时间t,故有∂V/∂t=
0,则由式(25)求得

V
·
=2(a1)2-13(a2)2-9a1a2 <0 (46)

从而V
·

负定.由表1可知,系统的零解是一致渐近

稳定的.
选取不同的初始时间,对方程(41)和(45)进行

数值模拟,得到系统的状态变量a1、a2 的时间演化

曲线和势函数的能量衰减图,如图3和图4所示.
可知不同初始条件下的状态变量和势函数均可在

短时间内收敛到零解,故系统的零解具有一致渐近

稳定性.

图3 算例2状态变量数值模拟结果

Fig.3 Numerical
 

simulation
 

results
 

of
 

state
 

variables
 

for
 

example
 

2

图4 算例2势函数数值模拟结果

Fig.4 Numerical
 

simulation
 

results
 

of
 

the
 

potential
 

function
 

for
 

example
 

2

例3 广义Birkhoff系统为

R1=0, R2=a1sint,

B=(a1)2sint-a1a2cost (47)

附加项为

Λ1=-2a1sint-a2cost+5a2sint,

Λ2=-5a1sint+4a2sint (48)

6
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显然,该系统是非自治的.
  

由式(23)可得

 (Ωμν)=
0 sint

-sint 0  ,(Ωμν)=
0 -csct
csct 0  

由方程(24)可得

a·1=-5a1+4a2

a·2
 

=4a1-5a2
(49)

  

不妨给定一组不含时间t的矩阵组合,使得矩

阵 (hμν)=
-1 0
0 -1  为负单位矩阵,(fμν)=

-1 1
1 -2  为 对 称 负 定 矩 阵,

 

(kμν) =

0 -1

-1 1  为半负定矩阵.由定理可知存在函数

V=V(t,a)使得非自治广义
 

Birkhoff
 

系统的运动

方程(24)可以表示为方程(29)的形式

a·1

a·2  = -1 0
0 -1  + -1 1

1 -2  +􀭠
􀭡

􀪁
􀪁􀪁

 
0 -1

-1 1  􀭤􀭥
􀪁
􀪁􀪁

∂V
∂a1

∂V
∂a2

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁

(50)

此时该系统具有三重组合梯度系统Ⅲ的表示.
结合式(49)和式(50),有

-5a1+4a2=-2
∂V
∂a1

4a1-5a2=-2
∂V
∂a2

(51)

即

∂V
∂a1=

5
2a

1-2a2

∂V
∂a2=-2a1+

5
2a

2

(52)

故可解出

V=
5
4
(a1)2+

5
4
(a2)2-2a1a2 (53)

显然W(X)=5(a1)2/4+5(a2)2/4为正定函数,
 

0<

V≤W(X),所以函数V 正定且具有无穷小上界.
显然此时函数V 中不含时间t,故有∂V/∂t=

0,则由式(25)求得

V
·
=-
33
2 a1  2-

41
2 a2  2+35a1a2 <0

(54)

从而V
·

负定.由表1可知,系统的零解是一致渐近

稳定的.
  

选取不同的初始时间,对方程(49)和(53)进行

数值模拟,得到系统的状态变量a1、a2 的时间演化

曲线和势函数的能量衰减图,如图5和图6所示.
可知不同初始条件下的状态变量和势函数均可在

短时间内收敛到零解,故系统的零解具有一致渐近

稳定性.

图5 算例3状态变量数值模拟结果

Fig.5 Numerical
 

simulation
 

results
 

of
 

state
 

variables
 

for
 

example
 

3

图6 算例3势函数数值模拟结果

Fig.6 Numerical
 

simulation
 

results
 

of
 

the
 

potential
 

function
 

for
 

example
 

3

例4 广义Birkhoff系统为

R1=0, R2=a1sint, B=4a1a2sint (55)
附加项为

7
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Λ1=4a1sint+8a2sint,Λ2=a1cost+2a2sint
(56)

显然,该系统是非自治的.
  

由式(23)可得

 (Ωμν)=
0 sint

-sint 0  ,(Ωμν)=
0 -csct
csct 0  

由方程(24)可得

a·1=-4a1+2a2

a·2
 

=-4a1-4a2
(57)

    

不妨给定一组不含时间t的矩阵组合,使得矩

阵 (hμν)=
0 1

-1 0  为 反 对 称 矩 阵,(fμν)=

-1 1
1 -3  为对称负定矩阵,(kμν)=

0 -1

-1 1  为

半负定矩阵.由定理可知存在函数V =V(t,a)使

得非自治广义
 

Birkhoff
 

系统的运动方程(24)可以

表示为方程(30)的形式

a·1

a·2  = 0 1

-1 0  + -1 1
1 -3  +􀭠

􀭡

􀪁
􀪁􀪁

 
0 -1

-1 1  􀭤􀭥
􀪁
􀪁􀪁

∂V
∂a1

∂V
∂a2

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁

(58)

此时该系统具有三重组合梯度系统Ⅳ的表示.
结合式(57)和式(58),有

-4a1+2a2=-
∂V
∂a1+

∂V
∂a2

-4a1-4a2=-
∂V
∂a1-2

∂V
∂a2

(59)

即

∂V
∂a1=4a1

∂V
∂a2=2a2

(60)

故可解出

V=2(a1)2+(a2)2 (61)

显然W(X)=2(a1)2+2(a2)2 为正定函数,
 

0<
V ≤W(X),所以函数V 正定且具有无穷小上界.

显然此时函数V 中不含时间,故有∂V/∂t=0,
则由式(25)求得

V
·
=-16(a1)2-8(a2)22 <0 (62)

从而V
·

负定.由表1可知,系统的零解是一致渐近

稳定的.
  

选取不同的初始时间,对方程(57)和(61)进行

数值模拟,得到系统的状态变量a1、a2 的时间演化

曲线和势函数V 的能量衰减图,如图7和图8所

示.可知不同初始条件下的状态变量和势函数均可

在短时间内收敛到零解,故系统的零解具有一致渐

近稳定性.

图7 算例4状态变量数值模拟结果

Fig.7 Numerical
 

simulation
 

results
 

of
 

state
 

variables
 

for
 

example
 

4

图8 算例4势函数数值模拟结果

Fig.8 Numerical
 

simulation
 

results
 

of
 

the
 

potential
 

function
 

for
 

example
 

4

4 结论
  

本文针对非自治广义Birkhoff系统稳定性研

究中Lyapunov函数构造困难的问题,提出了一种

基于三重组合梯度系统的新方法.通过建立四类矩

8
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阵组合与系统的三重组合梯度系统表示的对应关

系,使得在具体分析时只需确定矩阵组合的类型,

即可直接求解出Lyapunov函数,降低了稳定性分

析的难度.该方法不仅为判定非自治广义Birkhoff
系统的零解稳定性研究提供了新的途径,其理论框

架还可推广应用于其他约束力学系统的稳定性分

析.数值算例验证了该方法的有效性.
  

算例中采用二维系统便于直接给出矩阵组合

并验证其稳定性.然而,对于高维非自治广义Birk-
hoff系统中,往往难以直接获得满足条件的矩阵组

合.针对这一问题,可通过计算机编程辅助求解:在
限定矩阵元素范围的条件下,搜索符合条件的矩阵

组合,并通过计算相应的函数V 和V
·

来判断系统

稳定性.这种数值化处理方法进一步拓展了三重组

合梯度方法的实际应用范围.
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