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An Equivalent Mechanical Model for Aircraft Fuel Sloshing Based

on Finite Element Mesh”

Li Bin Miao Nan" Yan Jiajun Du Yahang Wang Sen
(School of Aerospace Engineering,Zhengzhou University of Aeronautics, Zhengzhou 450046, China)

Abstract Fuel sloshing within aircraft fuel tanks can generate significant forces and moments on the
tank walls, thereby affecting the aircraft’s dynamic characteristics. To enable accurate and efficient pre-
diction of sloshing-induced forces and moments, this study develops an equivalent pendulum mechanical
model based on the finite element method. The study focuses on fuel within auxiliary and wing tanks at
a 50% fill ratio. Using this model, the sloshing forces, moments, and the motion of the fuel’s center of
mass are predicted under three typical flight conditions: pitch, roll, and yaw. The predicted results are
further compared with those from computational fluid dynamics simulations, demonstrating the accuracy

of the proposed model in capturing the dynamic response of fuel sloshing.
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Table 1 Main parameters of equivalent mechanical model
in the auxiliary fuel tank

Parameters Unit No baffle Three baffles

Sloshi - m./kg 253. 1 173.6
SOSIME MASS ke 134. 7 118.1
Suspension h,/m 7.62 11.24
Point h,/m —0.50 —0.50
Pendulum length [, /m 8.332 11.93
Length l,/m 0.1824 0.1802

Static mass m,/kg —97.79 —64.68

. . ¢, 4.590X 10 ° 7.623X10 °
Damping ratio s 5
¢, 1.384X10 ° 1.674X 10 °
“ent {
Ler,l ere ro/m (02,00 —0.99) (0 1.99 —2.69)
static mass
Inertia tensor diag(13. 10 diag(52. 26
I,/kg * m

of static mass 360.1 340.3) 395.7 339.4)
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Fig. 13 Liquid dynamic responses under roll excitation
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Fig. 14 Liquid dynamic responses under pitch excitation
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Fig. 15 Liquid dynamic responses under yaw excitation
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