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Delayed Feedback Reservoir Inspired Modeling of Gait Coordination
Mapping and FPGA-Implementation for Lower Limb Prosthesis”
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(1. Academy for Engineering & Technology. Fudan University, Shanghai 200433, China)
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Abstract Gait trajectory planning is a critical component in the control of powered lower limb prosthe-
ses. In order to achieve coordination between the prosthesis and the intact limb, existing gait trajectory
planning methods generally employ data-driven modeling, which directly maps the movement of intact
limbs as the reference trajectory of prostheses. However, these methods often suffer from high modeling
complexity and poor perturbation resilience. To address this issue, we proposed a novel gait trajectory
planning method driven by the delayed feedback reservoir. In this approach, we utilized the Mackey-
Glass oscillator as the nonlinear node of the reservoir, with the hip angle of the amputatied side serving
as the input. The output is the mapped knee angle of the prosthesis. Notably, the output of the reservoir

is the linear superposition of the virtual node states, offering significant advantages in terms of high
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global convergence and fast convergence speed during training and computing. Furthermore, we de-
ployed the delayed feedback reservoir on the FPGA hardware and utilized serial communication to achieve
data interaction with the STM32 microcontroller, allowing for real-time wearability experiments on a
powered lower limb prosthesis. The experimental results show that our model achieves a correlation co-
efficient of 0. 8377 between intact limb and prosthesis under normal walking and 0. 7436 under perturba-
tion, demonstrating a strong correlation. The jerk value also reflects the model’ s robust resistance to
perturbations, with an average jerk of 47 979 deg/s®, which is approximately 31% lower than that of the

intact limb. This demonstrates that DFR possesses significant perturbation resistance and enhances the

adaptability of lower limb prostheses in different walking scenarios.

Key words delayed feedback reservoir,

coordination, gait control
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when encountering perturbations; (e) Time evolution of knee angle of both intact limb and prosthesis; () Jerk data from both sides;

(g) Time evolution of perturbations
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