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Flexural Wave Propagation Method Combined with the Wave

Theory to Identify Damage in Beam Structures”

Li Yanchen Chang Jun'
(School of Civil Engineering, SuZhou University of Science and Technology, Suzhou 215011, China)

Abstract To address the issue of low accuracy in local damage identification of beam structures based on
modal parameters, a combined damage identification method integrating the theory of flexural wave
propagation and wave theory is proposed. Firstly, the motion equation governing the flexural deforma-
tion of slender beams under the Bernoulli-Euler beam model is derived, and theoretical analysis of
flexural wave propagation in the beam is conducted to obtain the wave propagation solution. Secondly,
flexural wave in the beam is identified using wave theory. Finally, a damage index based on the relation-
ship between beam stiffness and flexural wave velocity is constructed to identify structural damage, in-
cluding its location and degree. The method is validated through numerical models and laboratory experi-

ments, demonstrating it has good noise immunity.
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Table 2 Damage identification results of simply supported beam
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Table 4 Damage identification results of continuous beam
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