
第23卷第5期

2025年5月
动 力 学 与 控 制 学 报

JOURNAL
 

OF
 

DYNAMICS
 

AND
 

CONTROL
Vol.23

  

No.5
May2025

文章编号:1672-6553-2025-23(5)-069-013 DOI:10.6052/1672-6553-2024-101

 2024-09-03收到第1稿,2024-10-22收到修改稿.
*国家自然基金资助项目(62173341),江苏省自然科学基金(BK20231487),National

 

Natural
 

Science
 

Foundation
 

of
 

China
 

(62173341),
 

Nat-
ural

 

Science
 

Foundation
 

of
 

Jiangsu
 

Province
 

(BK20231487).
†

 

通信作者
 

E-mail:hspei@sina.cn

基于河马算法的贝叶斯分类技术研究*

韩俊威1 王荣浩2 黄世沛1† 吴畏1 黄俊华3 骆茂森4

(1.
 

温州大学
 

电气数字化设计技术国家地方联合工程实验室,
 

温州 325035)

(2.
 

中国人民解放军陆军工程大学,
 

南京 210000)

(3.
 

国网浙江省电力有限公司淳安县供电公司,
 

杭州 311700)

(4.
 

国网浙江省电力有限公司建德市供电公司,
 

杭州 311600)

摘要 朴素贝叶斯分类器(NBC)凭借其坚实的概率理论基础,在处理包含不确定特征和噪声干扰的数据集

时展现出了显著的分类优势.随着社会数据的复杂性日益攀升,以占比量来衡量先验概率的方法在一定程

度上限制了朴素贝叶斯分类器的性能表现.先验概率的构造是贝叶斯分类研究中的重要问题,是决定朴素

贝叶斯分类准确率的重要因素.如何有效估计和构造最优先验概率逐渐成为学者们关注的研究议题.为此,

本文引入t分布变异和自适应权重对河马优化算法(HOA)的个体更新公式进行改进,并基于此提出了一种

结合优化算法、训练样本和测试样本构造贝叶斯最优先验的优化方法,得到了较好的分类性能.具体流程

为:采集系统数据并划分为训练集、验证集和测试集,以训练集得到的模型参数作为验证集的贝叶斯分类器

初始输入,再以分类准确率为目标函数,采用改进河马优化算法搜寻验证集的贝叶斯最优先验,最后将寻优

结果作为测试集的先验,得到分类准确率.通过切换电路系统仿真来测试所提出的方法,并与其他主流分类

算法对比,结果显示所提方法表现出较高的分类准确性.

关键词 朴素贝叶斯分类, 河马优化算法, 最优先验概率, 数据分类, 改进策略
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Abstract The
 

Naive
 

Bayes
 

classifier(NBC),
 

with
 

its
 

solid
 

foundation
 

in
 

probability
 

theory,
 

exhibits
 

sig-
nificant

 

classification
 

advantages
 

when
 

dealing
 

with
 

datasets
 

containing
 

uncertain
 

features
 

and
 

noise
 

in-
terference.

 

With
 

the
 

increasing
 

complexity
 

of
 

social
 

data,
 

the
 

method
 

of
 

measuring
 

prior
 

probability
 

based
 

on
 

proportion
 

has
 

to
 

some
 

extent
 

limited
 

the
 

performance
 

of
 

Naive
 

Bayes
 

classifiers.
 

The
 

construc-
tion

 

of
 

prior
 

probabilities
 

is
 

an
 

important
 

issue
 

in
 

Bayesian
 

classification
 

research
 

and
 

a
 

crucial
 

factor
 

in
 

determining
 

the
 

accuracy
 

of
 

Naive
 

Bayes
 

classification.
 

How
 

to
 

effectively
 

estimate
 

and
 

construct
 

the
 

highest
 

priority
 

probability
 

has
 

gradually
 

become
 

a
 

research
 

topic
 

of
 

concern
 

for
 

scholars.
 

Therefore,
 

this
 

article
 

introduces
 

t-distribution
 

variation
 

and
 

adaptive
 

weights
 

to
 

improve
 

the
 

individual
 

update
 

for-
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mula
 

of
 

Hippopotamus
 

Optimization
 

Algorithm
 

(HOA).
 

Based
 

on
 

this
 

improvement,
 

an
 

optimization
 

approach
 

is
 

proposed,
 

which
 

integrates
 

the
 

optimized
 

algorithm
 

with
 

the
 

construction
 

of
 

Bayesian
 

opti-
mal

 

priors
 

using
 

both
 

training
 

and
 

testing
 

samples.
 

This
 

method
 

has
 

achieved
 

superior
 

classification
 

per-
formance.

 

The
 

specific
 

process
 

is
 

to
 

collect
 

system
 

data
 

and
 

divide
 

it
 

into
 

training
 

set,
 

validation
 

set,
 

and
 

test
 

set.
 

The
 

model
 

parameters
 

obtained
 

from
 

the
 

training
 

set
 

are
 

used
 

as
 

the
 

initial
 

input
 

for
 

the
 

Bayes-
ian

 

classifier
 

in
 

the
 

validation
 

set.
 

Then,
 

with
 

classification
 

accuracy
 

as
 

the
 

objective
 

function,
 

the
 

im-
proved

 

Hippopotamus
 

Optimization
 

Algorithm
 

is
 

used
 

to
 

search
 

for
 

the
 

Bayesian
 

optimal
 

prior
 

in
 

the
 

val-
idation

 

set.
 

Finally,
 

the
 

optimization
 

result
 

is
 

used
 

as
 

the
 

prior
 

in
 

the
 

test
 

set
 

to
 

obtain
 

the
 

classification
 

accuracy.
 

The
 

proposed
 

method
 

was
 

tested
 

by
 

switching
 

circuit
 

system
 

simulations
 

and
 

compared
 

with
 

other
 

mainstream
 

classification
 

algorithms.
 

The
 

results
 

showed
 

that
 

the
 

proposed
 

method
 

exhibited
 

high
 

classification
 

accuracy.
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Bayes
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verifica-
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引言
  

当今社会已进入大数据信息化时代,数据的规

模和复杂性呈指数级增长,如何有效地处理和分析

这些数据,挖掘其潜在价值,成为科研、商业乃至社

会发展的重要课题.分类技术作为数据挖掘领域中

的一项关键技术,其重要性在学术研究中日益凸

显.它通过对数据进行系统、科学地分类,不仅能够

揭示数据内在的规律和模式,还能为后续的统计分

析、模型构建和预测分析提供坚实的基础.在学术

研究中,分类技术被广泛应用于各个领域,如生物

信息学[1-3]、经济学[4-6]、社会学[7-9]等,成为推动学

科发展和知识创新的重要工具.
当今主流的分类技术包括 K近邻[10]、支持向

量机[11]、决策树[12]、神经网络[13]和朴素贝叶斯分

类器(Naive
 

Bayes
 

classifier,
 

NBC)[14]等,其中朴

素贝叶斯分类器基于概率理论具备坚实的数学基

础,能够处理不确定性和噪声数据,适用于不同类

型的数据集甚至是非常规复杂数据集,其强大的适

用性和可解释性使其饱受学者青睐.随着大数据时

代的到来,数据的复杂性和多样性不断增加,对分

类算法的要求也越来越高.朴素贝叶斯分类器因其

独特的优势,成为学者们研究的热点之一.近年来,

学者们对朴素贝叶斯分类器的研究不断深入,不仅

在传统领域取得了丰硕的成果,还在新兴领域如机

器学习[15]、文本处理[16]、模式识别[17]等领域中发

掘出朴素贝叶斯分类器的巨大潜力.例如,Tan
等[18]基于朴素贝叶斯分类器和概率神经网络提出

了一种新的气体泄漏监测传感器故障诊断方法,用
于识别异常的安全监测数据并进行传感器故障分

类;学者Ruan等人[19]使用统计特征加权技术,基
于多项式朴素贝叶斯文本分类器提出了一种新的

分类深度特征加权方法;Kim等[20]考虑了标签之

间的关系或依赖性,提出了一种新的多标签朴素贝

叶斯分类器;Reddy等[21]使用网络节点认证模块

结合朴素贝叶斯分类模块,提出了一种分布式拒绝

服务(distributed
 

denial
 

of
 

service,
 

DDoS)攻击严重

性缓解解决方案,用于检测和隔离DDoS攻击流量

模式;Zhang等[22]提出了一种基于贝叶斯加性分

类树的非线性分类方法,在和支持向量机(support
 

vector
 

machine,SVM)、随机森林(random
 

forest,

RF)、分类与回归树(classification
 

and
 

regression
 

tree,CART)等方法的对比中有着较好的效果;

Balaji等[23]使用一种新的动态图割算法来分割皮

肤病变,然后使用朴素贝叶斯分类器进行皮肤病分

类,结果分别比全卷积神经网络(fully
 

convolu-
tional

 

networks,FCN)和SegNet方法高出6.5%
和8.7%.鉴于朴素贝叶斯分类器在多个领域内的

广泛应用,当今贝叶斯算法的重要性日益凸显.
  

随着朴素贝叶斯分类器在多个领域的广泛应

用和深入研究,学者们发现,朴素贝叶斯分类器在

面对特征间存在复杂分布关系的数据集时,其分类

性能往往受限.为了克服这一局限,研究者们开始

探索先验概率优化的途径,旨在通过更加精细地估

计先验分布,来提升朴素贝叶斯分类器的整体性

能.先验概率作为贝叶斯推断的基础,直接影响了
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分类结果的准确性和可靠性.因此,对贝叶斯先验

概率进行进一步的探索研究,成为推动朴素贝叶斯

分类器性能提升的关键所在.近年来,学者们不仅

关注先验概率的设定方法,还积极研究如何根据特

定应用场景的数据特点去调整和优化先验概率,以
提高分类器的性能.学者们做出了许多努力来开发

模型选择的客观先验,比如,Llorente等[24]讨论了

边际似然的先验敏感性问题及其在模型选择中的

作用;Villa等[25]在模型嵌套情况下使用 KL散度

(Kullback-Leibler
 

divergence)来评价每个模型的

价值参数,从而确定针对不同模型的合适先验概

率;Trang等[26]用模糊聚类方法(fuzzy-c
 

means,

FCM)将训练集中的种群信息与新的观测值相结

合来确定分类问题的先验概率,从而提出了一种结

合训练数据、新观测数据和FCM 确定先验概率的

算法;Boluki等[27]基于条件概率形式的约束的一

般框架,提出一种新的先验概率构造法;Maruyama
等[28]研究了具有球对称误差分布的线性模型中的

贝叶斯变量选择问题以及g-先验混合的贝叶斯因

子的拉普拉斯近似.
  

上述先验概率构造方法从模型本身出发,相比

仅以占比量分配先验概率的经典方法,其先验概率

的构造方法更加合理,朴素贝叶斯分类准确率也有

一定的提升,但仍有继续提升的空间.为了尽可能

提高分类的准确率,当今贝叶斯先验概率的研究领

域不仅涉及概率论和统计学的知识,还融合了机器

学习、优 化 算 法 等 多 个 学 科 的 理 论.例 如 Tran
等[29]基于 Wasserstein距离的最小化,以函数先验

推理的方式提出一种鲁棒性较强的框架来将函数

先验与神经网络的函数先验进行匹配,从而调整神

经网络的参数先验;Esfahani等[30]通过路径分析

中的不完全先验信息,探索了优化先验概率构造的

新途径,相比之下取得了较好的效果;Wong等[31]

基于所有属性都遵循相同的广义狄利克雷先验的

假设,使用朴素贝叶斯机制优化属性的筛选与排

序,最后根据属性排序来搜索每个单一属性的最佳

先验,取得了较好的效果.这些研究充分展示了融

合机器学习与优化算法策略的先验概率优化方法

能得到对数据集适应能力更强的先验参数与贝叶

斯模型,且相比于朴素贝叶斯分类器和主流分类方

法往往能在复杂数据集中展示更高的分类准确率.
受此启发,本文提出了一种结合优化算法、训练样

本和测试样本确定特定数据集的贝叶斯最优先验

概率的方法.
  

河马优化算法(hippopotamus
 

optimization
 

al-

gorithm,HOA),是Amiri[32]于2023年提出的一种

新型群智能优化算法,它模拟了自然界中河马寻找

食物的行为过程,通过不断地迭代和搜索,找到问题

的最优解.该算法收敛快,灵活性高,在力学设计、成
本考虑、风电输出[32]等工程最优化问题上的表现良

好.但是HOA在某些情况下也存在精度低、易陷入

局部最优等缺点.本文的主要贡献如下:
(1)通过引入自适应线性权重与t分布变异对

HOA进行改进,提出一种改进的河马优化算法

(improved
 

hippopotamus
 

optimization
 

algorithm,

IHOA),改进后的算法在收敛速度与寻优精度方

面的性能有所提升.
  

(2)基于改进河马优化算法并融合了数据的训

练集、验证集和测试集,提出了一种确定数据集贝

叶斯最优先验的方法.以二状态电路系统为例,以
预测正确的正负样本数之和与测试集样本数的比

率作为目标函数,通过迭代得到最优先验并用于测

试集的分类,通过对比可知该方法分类准确率较

高,为电路系统后续辨识提供了可靠的分类支持.

1 朴素贝叶斯模型
  

朴素贝叶斯分类器是一种基于贝叶斯定理的

分类算法[33].朴素贝叶斯分类器假设特征向量的

各分量相对于决策变量是相对独立的.设一个训练

样本集为D,其样本个数为 N,类别个数为m,即
表示为

C={C1,C2,…,Cm} (1)
  

N 个样本中第Cj 类样本个数为 NCj
,其中

j=1,2,…,m.若该样本包含属性数量为n,则第r
个样本表示为

 xr =(xr1,xr2,…,xrn),r=1,2,…,N (2)
其中xri 表示第r个样本属性Ai 的取值,i=1,2,
…,n.

  

现给定一个待判样本y
y=(y1,y2,…,yn) (3)

然后可以根据朴素贝叶斯分类原理计算出待判样

本y 属于类别Cj 的条件概率为

P(Cj|y)=
P(Cj)
P(y)

P(y|Cj) (4)
  

由于p(y)对所有类为常数,所以只需要p(y|
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Cj)p(Cj)最大即可.先验概率p(Cj)的估计值可利用

样本集D 得出,即p(Cj)=NCj
/N.由于朴素贝叶斯

分类器以类别条件独立性为假设前提,因此有

 P(y|Cj)=∏
n

k=1
P(yk|Cj)

  =P(y1|Cj)P(y2|Cj)…P(yn|Cj) (5)
各条件概率 P(y1|Cj),P(y2|Cj),…,P(yn |
Cj)可进行连续或离散情况下的讨论.

  

如果是连续值属性,假设连续值属性服从高斯

分布,公式如下:

g(y,μ,σ)=
1
2πσ
e

-
(y-μ)

2

2σ2 (6)

P(yk|Cj)=g(yk,μCj
,σCj

) (7)
其中μCj

和σCj
为Cj 类中特征属性的均值和标准差.

如果是离散值属性,则通过相应属性中值为

yk 且属于Cj 类的个数来计算p(yk|Cj).后验概

率的数学公式描述如下:

P(Cj|y)=
P(Cj)
P(y)∏

n

k=1
P(yk|Cj) (8)

  

测试样本会被分在最大化的后验概率所包含

的类中,综上所述,可得到朴素贝叶斯分类器的模

型为

Vnb(E)=argmax
C

P(C)∏
n

k=1
P(yk|Cj) (9)

  

以上是传统贝叶斯分类算法的内容.在朴素贝

叶斯分类器的应用中,先验概率的设定对于分类性

能具有显著影响.传统先验概率往往基于样本占比

的假设来进行分配,这在处理某些简单或特定类型

的数据集时可能表现出良好的分类效果.然而当面

对复杂且非标准化的数据集,特别是非常规数据集

时,这种基于均匀分布的先验概率设定方式往往无

法准确反映数据的真实分布,从而导致分类结果不

理想.为了提高分类结果的可靠性,本文提出基于

改进河马优化算法的先验概率构造方法,旨在通过

引入河马算法的寻优机制,针对特定数据集对先验

概率的分配进行优化,使得分类器能够更好地适应

复杂数据集的特性,提高分类准确率.下一节将简

单介绍所采用的河马优化算法.

2 河马优化算法及其改进策略
  

本小节介绍了原始河马优化算法(HOA)原
理,提出了改进河马优化算法(IHOA)的改进策

略,并给出了IHOA的流程图介绍.

2.1 HOA介绍
  

河马优化算法是一种新型的元启发式优化算

法[32].通过模拟河马的社会行为来对粒子位置进

行更新,例如它们在河流或池塘中的位置更新,对
捕食者的防御策略以及逃避捕食者的方法.河马优

化算法能够自适应地调整搜索空间的分辨率和搜

索速度,快速而准确地找到最优解.
2.1.1 初始化

  

设种群个体为 N,每个个体都是由m 个决策

变量构成的向量,代表着粒子的搜索位置,在数学

上由一个N×m 的矩阵表示.每只河马的位置代

表了优化问题的候选解.

χ=

χ1

︙
χi

︙
χN

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

N×m

=

x1,1 … x1,j … x1,m

︙ ⋱ ︙ ⋰ ︙

xi,1 … xi,j … xi,m

︙ ⋰ ︙ ⋱ ︙

xN,1 … xN,j … xN,m

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

N×m

(10)
与传统优化算法类似,河马算法的搜索粒子在

初始化阶段随机生成,公式如下:

xij =lbj +r·(ubj -lbj),

 for
 

i=1,2,…,N,
 

and
 

j=1,2,…,m (11)
其中xi 表示第i个候选解的位置,r是0到1之间

的随机数,xu
j 和xl

j 分别表示第j 个决策变量的上

限和下限.
2.1.2 河马在河流或池塘中的位置更新

河马群由几只成年雌性河马、小河马、多只成

年雄性河马和河马领袖组成.初始个体位置生成后

以适应度值为标准筛选出最优个体,将此个体确定

为河马种群领袖.下式模拟了成年雄性河马被河马

领袖赶出种群的社会行为,雄性河马的位置更新如

下所示

xMhippo
ij =xij +y1·(Dhippo-I1xij)

 for
 

i=1,2,…,
N
2
􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 ,
 

and
 

j=1,2,…,m (12)

其中xij 表示河马原始位置;xMhippo
ij 表示被驱赶后

的河马位置;Dhippo 表示领袖河马位置,即迭代以来

适应度最佳的河马位置;y1 表示0到1之间的随

机数;I1、I2 表示一个值为1或2的随机变量.
  

而小河马往往会离开母河马,在种群周围随机

活动,下式进行小河马的位置更新

 xFBhippo
ij =

xij+h1·(Dhippo-I2·xMG
i ), T>0.6

Ξ,  else 
(13)
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Ξ=
xij +h2·(xMG

i -Dhippo), r6 >0.5

xl
j +r7·(xu

j -xl
j),   else 

 for
 

i=1,2,…,
N
2
􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 ,
 

and
 

j=1,2,…,m (14)

其中,xij 表示为更新前的位置,xFBhippo
ij 表示为更新

后的小河马位置,h1、h2 为相应随机数组中的元

素.xMG
i 表示为随机选出的一组河马的位置平均

值.r6、r7 表示为0到1之间的随机数.
基于迭代数的非线性衰减因子为:

T=exp(-
t

tmax
) (15)

  

T 表示为基于迭代数的非线性衰减因子,t为当前

迭代数,tmax 为最大迭代数.衰减因子T 大于0.6
则表明小河马已经远离母亲,否则转入下一个判断

条件:当r6 大于0.5时,表明小河马远离母亲,但

是仍在群体周围活动;否则小河马脱离了群体,位
置在搜索上限与下限之间随机生成.在该阶段,如
果雄性河马或小河马更新后的位置适应度值优于

最优个体,则该个体替换更新为最优个体.
2.1.3 河马防御捕食者

  

该阶段模拟了河马面对不同捕食者时所做的

防御行为.首先在搜索上下限之间随机生成捕食者

的位置,公式如下:

xPredator
j =xl

j +r8·(xu
j -xl

j) (16)

d=|xPredator
j -xij| (17)

其中xPredator
j 为捕食者的位置,r8 为0到1之间的随

机数.d 为第i只河马到捕食者之间的欧氏距离.
河马面对捕食者时会表现出靠近捕食者以压

迫其撤退的行为,但是面对不同的捕食者会采取不

同的措施.如果捕食者的适应度值低于河马,河马

会转向捕食者并朝其大步移动逼迫其撤退,反之河

马会出于安全考虑谨慎接近捕食者,移动范围较

小,如下所示:

xHippoR
ij =

RL􀱇xPredator
j +

B
c-e×cos(2πg)  1

d  ,FPredatorj
<Fi

RL􀱇xPredator
j +

B
c-e×cos(2πg)  1

2×d+r9  ,FPredatorj
≥Fi

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁􀪁

(18)

其中xHippoR
ij 代表河马面对捕食者更新后的位置.

RL 是具有Levy分布的随机向量,表示位置的突然

变化,增强全局搜索能力.B、c、e、g各代表区间[2,

4]、[1,2]、[2,3]、[-2π,2π]之间的随机变量.r9
表示为0到1之间的随机数.

 

在这个过程中,如果更新后的位置适应度值优

于当前最优适应度值,则替换更新为最优个体.该阶

段个体的全局搜索能力得到了显著增强,第二阶段

和第三阶段相辅相成,有效提高了算法的寻优能力.
2.1.4 河马逃离捕食者

  

该阶段模仿河马无法击退捕食者,就近进入池

塘躲避敌人的情况.算法表现为在该个体周围随机

生成新的搜索位置,且搜索范围基于迭代数的增加

而逐渐缩小,相比之下这种策略增强了本地搜索的

能力,公式如下所示

xHippoε
ij =xij +r10·

xl
j

t +s1·
xu

j

t -
xl

j

t  􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

 for
 

i=1,2,…,N
 

,and
 

j=1,2,…,m (19)
其中xHippoε

ij 是局部搜索更新后的位置,t为迭代次

数,r10、s1 是区间[0,1]的随机数.在这个过程中,
如果更新后的个体适应度值优于当前最优个体,则
替换更新.

  

最后,在下一次迭代开始前,将经过前三个搜

索阶段而产生的最优个体设为领袖,保存其适应度

值,将其与这次迭代产生的最优个体进行比较,以
此不断更新最优个体,直到达到最大迭代次数,从
而完成最优值的搜寻.

2.2 IHOA
  

通过上述分析可以看出,HOA能够凭借其快

速的收敛性和高度的灵活性,在工程问题中实现高

效迭代搜索,从而找到最优解.但是该算法的种群

个体更新依赖于大量的随机变量,在某些复杂场景

下收敛速度有限,且容易陷入局部最优的困境.为
了克服这些局限性,本文提出了改进策略:首先,在
该算法中引入了自适应权重因子改进第二阶段粒

子的更新判断条件;其次,引入t分布变异参数对

第三阶段的粒子进行变异更新,避免其陷入局部最

优,以期增强算法的全局搜索能力和解的精确性.
2.2.1 

 

自适应非线性权重
  

为了提高粒子前期的全局搜索能力以及后期

的局部搜索能力,避免搜索陷入局部最优,设计一

个非线性的权重因子rG 以更好地平衡算法的探索

能力,如下所示

rG=a-b×
t

tmax  􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 2 (20)
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在原始HOA的第二阶段中,雄性河马的更新

权重为0到1之间的随机数,而小河马完全脱离种

群后是在空间中随机生成新的位置,两者的位置更

新有较高的随机性,在优化寻解过程中不能快速收

敛至最优解,有一定的改进空间.
  

改进后的雄性河马个体位置的更新公式如下

所示:

xMhippo
ij =xij +rG·y1·(Dhippo-I1xij)(21)

改进后的幼河马个体位置的更新公式如下

所示:

xFBhippo
ij =

xij+h1·(Dhippo-I2·xMG
i ), T>0.6

Ξ, else 
Ξ=

xij +h2·(xMG
i -Dhippo), r6 >0.25·rG

xl
j +r7·(xu

j -xl
j), else 

(22)

  

通过引入该非线性权重因子rG,使改进后的

雄性河马粒子在迭代前期搜索较激进,着重于全局

搜索,在迭代后期搜索趋于保守,着重于局部搜索;

小河马前期更侧重于脱离种群,进行全局搜索,后
期则在种群周围搜索.改进之后算法在全局与局部

的搜索能力得到了平衡.
2.2.2 自适应t分布变异

  

t分布[34]又称为学生分布,含有参数自由度

n,自由度n 影响曲线的形态与特性,n 越大则曲线

中间越高.当n 为1时,t分布接近于柯西分布;当

n 趋向于无穷时,t分布接近高斯分布.
在原河马优化算法中,当河马面对适应度较差

的捕食者时,个体会采取谨慎接近的策略,这可能

会导致收敛速度低下甚至是陷入局部最优解.为了

避免这种状况,我们在个体谨慎接近捕食者后引入

自适应t分布变异,产生变异个体以增加种群个体

的多样性,避免陷入局部最优.粒子更新公式如下

xt
i =xi+xi·T(t) (23)

其中,xt
i 表示变异后的河马个体位置,xi 表示为第

i个更新前的河马个体的位置,T(t)表示为以算法

迭代次数t为参数自由度的学生分布.
  

引入自适应t分布变异后,随着迭代次数的增

加,算法将柯西变异与高斯变异的优点逐渐结合起

来,在搜索初期具有良好的全局搜索性,而在后期

具有较优的局部开发性.利用当前参数的不定性,

使得个体能够跳出局部,促进收敛于全局最优,加
快了收敛进程.

  

改进HOA框图如图1所示.

图1 改进河马优化算法的流程框图

Fig.1 Process
 

flowchart
 

for
 

improving
 

hippopotamus
 

optimization
 

algorithm

我们已经深入探讨了朴素贝叶斯分类器(NBC)
和河马优化算法(HOA)的原理及应用,并对 HOA
的寻优性能进行了一定改进,提出了一种改进河马

优化算法(IHOA).传统的贝叶斯分类器在设定先验

概率时往往基于均匀分布或经验选定,这在面对复

杂数据集时可能导致分类性能不佳.为了克服这一

局限性,我们利用IHOA来优化朴素贝叶斯分类器

的先验概率.

3 基于IHOA的贝叶斯分类算法
  

将改进河马优化算法用于朴素朴素贝叶斯分

类的先验概率优化,即利用IHOA的优化寻解能力

为数据集确定最佳先验概率,从而提出了一种朴素

贝叶斯先验概率优化方法(Naive
 

Bayes
 

classifiers-
improving

 

hippopotamus
 

optimization
 

algorithm,

NBC-IHOA).
  

算法优化部分具体为,首先通过训练集数据及

标签信息得到每个类别的均值μ 与标准差σ;初始

化种群个体得到其中一个类别的先验概率p:
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p=[x1,x2,…,xN]T (24)

其中xi(1≤i≤N)为各个体位置,在算法中xi 代

表了先验概率.
  

已知其中一个类别的先验概率p,则该二分类

数据的朴素贝叶斯分类先验概率为

P=

x1
 1-x1

x2 1-x2

︙ ︙

xN 1-xN

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

(25)
  

将该先验概率组P 与训练参数μ、σ作为验证

集的朴素贝叶斯分类器输入参数,得到 P(yk|
Cj),即属于第Cj 类的前提下待判样本y 在属性

Ai 取值为yk 的条件概率,如下所示:

P(yk|C1)=g(yk,μC1
,σC1

) (26)

P(yk|C2)=g(yk,μC2
,σC2

) (27)

通过输入先验概率与条件概率,对于每个测试

样本yk 进行针对每个类别Cj 的后验概率计算,待
判样本y属于类别C1 与类别C2 的条件概率如下:

P(C1|y)=
xi

P(y)∏
N

k=1
P(yk|C1) (28)

P(C2|y)=
1-xi

P(y)∏
N

k=1
P(yk|C2) (29)

  

此时利用NBC对向量y 进行分类,后验概率

的比较有

P(Ci|y)>P(Cj|y),

 for
  

i=1,j=2,
 

or
 

j=1,i=2 (30)
当P(Ci|y)最大时,则认为y 的标号为Ci,最

终测试样本会被分在最大化的后验概率所包含的

类中.由此可得到预测标签并与验证集标签比对得

到分类准确率(accuracy)A(xi)并保存最佳结果,

计算方法如下:

A(xi)=
TP+TN

TP+TN +FP+FN
(31)

其中,TP 是被预测为正类的正类样本;FP 是被预

测为正类的负类样本;TN 是被预测为负类的负类

样本;FN 是被预测为负类的正类样本.算法优化

过程中的适应度值(fitness)即为分类准确率(accu-
racy).将准确率作为IHOA的评价指标,在验证集

上对先验概率进行迭代寻优后得到最优分类准确

率Abest 和对应的最优先验概率pbest.最后将该最

佳先验概率pbest用于测试集分类.
  

NBC-IHOA方法流程图如图2所示,具体步

骤描述如下:
  

Step
 

1
 

将系统所得数据样本进行预处理,合理

划分出训练集、验证集与测试集;
  

Step
 

2
 

初始化种群个体得到初始先验概率组

p,结合由训练集样本得到的模型参数,对验证集

分类得到各个体的适应度;
  

Step
 

3
 

更新当前最优适应度值;
  

Step
 

4
 

一半种群个体作为雄性河马与幼河马

使用公式(21)和公式(22)更新位置pnew1,结合模

型参数对验证集进行分类,得到各个体的适应度,

比较并更新较优位置与较优适应度;
  

Step
 

5
 

重复Step
 

4直到达到规定循环次数,保

存第一阶段的最优个体与适应度;
  

Step
 

6
 

使用公式(16)随机生成捕食者位置,根

据捕食者位置情况,另一半种群个体根据公式(18)

更新位置,并通过公式(23)产生变异个体,得到新

位置pnew2;
  

Step
 

7
 

结合模型参数与pnew2,对验证集分类

得到各个体的适应度,比较并更新较优值;

Step
 

8
 

重复Step
 

4到Step
 

7之间步骤,直到

达到规定循环次数,保存一、二阶段最优的位置与

适应度;
  

Step
 

9
 

将i重设为1;
  

Step
 

10
 

使用公式(19)更新个体位置pnew3;
  

Step
 

11
 

按照同样方式更新各个体的适应度,

比较并更新较优值;
  

Step
 

12
 

重复Step
 

10、Step
 

11的步骤,直到达

到规定循环次数,保存第三阶段最优的位置与适

应度;
  

Step
 

13
 

重复Step
 

3到Step
 

12,直到达到规定

迭代次数,输出最优先验概率pbest与适应度Abest;
  

Step
 

14
 

将由IHOA 优 化 得 到 的 先 验 概 率

pbest输入测试集贝叶斯模型,将测试集分为m 类,

对比标签评估其分类准确率.

4 仿真算例

4.1 系统设置
  

本节采用一个以升压电路为核心的二分类系

统来进行算例仿真.系统为一个带有切换负载的

boost电路,拓扑结构如图3所示.该仿真系统的输

入量为恒定电压,经过电路升压后输出.输出负载

串联一个受切换开关作用的负载,因此切换开关可
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图2 NBC-IHOA流程图

Fig.2 NBC-IHOA
 

process
 

diagram

图3 仿真电路拓扑结构图

Fig.3 Simulation
 

circuit
 

topology
 

diagram

以通过若干次切换调整电压输出.由于仿真系统会

有不可避免的随机噪声干扰,在同样参数及结构的

实际系统中,多次仿真的数据结果不尽相同,因此

本节对输入电压与输出电压施加随机噪声以模拟

实际系统,具体为每次采集数据时改变噪声的随机

种子值,施加不同高斯噪声扰动以模仿实际系统的

数据输出.采集多次完整数据并保留一次完整过程

的数据为测试集,其余数据打乱重组,划分并设置

为训练集与验证集.
  

系统参数设置如下:输入电压U 为40
 

V,电感

值L 为3e-3
 

H,电容值C 为1e-4
 

F,开关频率f
为10

 

kHz,占空比D 为0.6,主负载R0 为50
 

Ω,

仿真时长为0.3
 

s,输出结果受信噪比(SNR)为

5
 

dB的高斯白噪声扰动.本文设置切换负载Rswitch

分别为20
 

Ω、10
 

Ω以及2
 

Ω三种情况,通过切换信

号Pulse2 来调整切换系统驻留在某个子系统上的

时长,产生不同情况下的仿真数据,从而进行算法

优化性与分类准确率的对比.每种情况下划分得到

的训练集为24
 

000个样本点,验证集与测试集各

为6000个样本点,训练集、验证集及测试集的数据

比重为4∶1∶1.

4.2 IHOA寻优对比
  

本文设置不同切换信号来调整切换系统驻留

在某个子系统上的时长,产生不同情况下的仿真数

据,从而进行算法优化性与分类准确率的对比.
IHOA与模拟退火算法(SAA)[35]、粒子群算法

(PSOA)[36]、HOA[32]、高 尔 夫 优 化 算 法

(GOA)[37]、霜冰优化算法(RIME)[38]在不同驻留

时间比及不同切换负载共9种情况下分别运行10
次取适应度曲线的平均值,对比结果如图4所示.
图中横轴代表迭代次数,纵轴代表分类的准确率.
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IHOA及其他群优化算法种群规模n=20,tmax=
50,搜索范围为[0,1].我们以驻留比0.6∶0.4,负
载10

 

Ω的情况为例,对原始输出信号与分类结果

信号进行重合对比,如图5及图6所示.由图5可

知,原始数据存在阶跃波段,考虑到后续的辨识工

作,该波段无法剔除从而对分类造成了干扰.由图

6可知经NBC-IHOA分类后,各个子系统的分类

图4 不同情况下NBC-IHOA与其他算法寻优对比结果
Fig.4 Comparison

 

of
 

optimization
 

results
 

between
 

NBC-IHOA
 

and
 

other
 

algorithms
 

under
 

different
 

conditions

结果与原始数据基本相吻合.

图5 驻留比0.6∶0.4,负载10
 

Ω情况下的输出

Fig.5 Output
 

under
 

a
 

residency
 

ratio
 

of
 

0.6∶0.4
 

and
 

a
 

load
 

of
 

10
 

Ω

图6 基于NBC-IHOA的分类结果与原始信号对比

Fig.6 Comparison
 

between
 

classification
 

results
 

and
 

original
 

signals
 

based
 

on
 

NBC-IHOA

IHOA与对比算法优化得到的先验概率pbest

及适应度值(即准确度),如表1所示.该表给出了

不同驻留时间比及不同切换负载共9种情况下,各

优化算法所得的最优先验概率与最优准确率.子系

统数量为2,因此子系统的贝叶斯先验概率之比为

pbest∶(1-pbest).分析表格结果得知相比于经典先

验概率,本文采用优化方法所得到的先验概率能得

到更高分类准确率,且IHOA的寻优性能相对其

他优化算法更稳定.
  

由表1可知在不同情况下,相比于准确率接近

的GOA与 HOA,IHOA在收敛速度上表现较好,

得到最优结果所需的平均迭代次数最少,面对工程
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运筹问题时能表现出快速稳定的寻解性能.

表1 各算法寻优结果及对应分类准确率

Table
 

1 Optimization
 

results
 

and
 

corresponding
 

classification
 

accuracy
 

of
 

each
 

algorithm

Resident
 

ratio Algorithm
R/Ω

20 10 2􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋
pbest Accuracy/% t pbest Accuracy/% t pbest Accuracy/% t􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋

NBC 0.7 98.93 0.7 98.38 0.7 96.78

PSOA 6.23e-02 99.50 17 1.06e-02 99.70 24 0.4794 97.68 20

HOA 7.14e-02 99.50 6 1.18e-02 99.70 11 0.4576 97.68 21

0.7∶0.3 IHOA 8.95e-02 99.50 3 1.03e-02 99.70 8 0.4781 97.68 6

SAA 9.48e-02 99.50 28 1.58e-02 99.66 / 0.4599 97.66 /

RIME 9.70e-02 99.50 16 8.90e-03 99.70 17 0.4793 97.68 24

GOA 6.24e-02 99.50 5 1.06e-02 99.70 10 0.4788 97.68 33

NBC 0.6 97.67 0.6 98.48 0.6 97.23
􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋

PSOA 1.70e-03 99.38 / 1.14e-02 99.65 / 0.3329 97.74 /

HOA 1.16e-05 99.52 44 7.6e-03 99.68 18 0.3323 97.75 19

0.6∶0.4 IHOA 1.10e-05 99.52 15 1.9e-03 99.68 8 0.3320 97.75 9

SAA 4.60e-03 99.24 / 1.38e-02 99.66 / 0.3117 97.72 /

RIME 1.84e-04 99.48 / 3.9e-03 99.68 18 0.3317 97.75 37

GOA 9.59e-06 99.52 19 7.2e-03 99.68 9 0.3328 97.75 32

NBC 0.5 98.47 0.5 98.55 0.5 97.63
􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋

PSOA 2.30e-03 99.50 / 8.95e-04 99.78 42 0.3977 97.76 /

HOA 1.10e-03 99.52 16 8.82e-04 99.78 30 0.4069 97.76 /

0.5∶0.5 IHOA 6.49e-04 99.52 9 8.71e-04 99.78 13 0.4202 97.77 7

SAA 4.20e-03 99.47 / 2.80e-03 99.73 / 0.3941 97.75 /

RIME 5.62e-07 99.52 35 1.87e-04 99.77 / 0.4232 97.77 35

GOA 8.88e-04 99.52 10 8.77e-04 99.78 24 0.4211 97.77 33

4.3 NBC-IHOA方法对比
 

为了进一步验证NBC-IHOA的分类性能,将9
种情况下使用NBC-IHOA方法得到的最优先验概

率之比用于对应测试集的分类,并将经典朴素贝叶

斯分类器(NBC)、高斯混合模型(GMM)、K均值聚

类(K-means)、支持向量机(SVM)、最小二乘支持向

量机(LSSVM)以及极限学习机(ELM)等主流分类

算法作为参照进行验证,结果如表2所示.分析可知

在以不能剔除异常波段为前提的系统数据集中,本

文的NBC-IHOA具有较好的分类表现:当负载变

化较大,两 类 子 系 统 数 据 差 异 较 明 显 时,NBC-

IHOA在分类准确率上相较于其他算法有一定的

优势;而当切换负载量较小时,NBC-IHOA的准确

率与稳定性进一步凸显.该提升得益于最优先验概

率的选择,为后续辨识保障了数据集的准确性.

表2 不同情况数据下各方法的分类准确率对比

Table
 

2 Comparison
 

of
 

classification
 

accuracy
 

of
 

various
 

methods
 

under
 

different
 

data
 

conditions

Resident
 

ratio Algorithm
R/Ω

20 10 2􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋
Accuracy/% Accuracy/% Accuracy/%􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋

NBC-IHOA 99.35 99.67 97.52

NBC 98.92 98.52 96.65

GMM 98.65 31.60 35.00

0.7∶0.3 K-means 98.50 97.87 69.45

LSSVM 98.60 98.50 68.75

SVM 98.48 97.80 94.53

ELM 99.18 98.78 91.12

NBC-IHOA 99.35 99.70 97.62
􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋

NBC 98.60 98.47 97.05

0.6∶0.4 GMM 98.70 96.57 44.87

K-means 98.52 97.83 58.90

LSSVM 98.57 98.38 58.00
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续表

Resident
 

ratio Algorithm
R/Ω

20 10 2􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋
Accuracy/% Accuracy/% Accuracy/%􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋

0.6∶0.4 VM 98.52 97.80 95.33

ELM 99.22 98.73 95.50

NBC-IHOA 99.43 99.68 97.52
􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋

NBC 98.48 98.30 97.20

GMM 97.18 96.90 54.82

0.5∶0.5 K-means 98.50 97.80 49.45

LSSVM 98.53 97.98 94.85

SVM 98.50 97.78 95.15

ELM 99.18 98.70 95.65

5 结论
  

贝叶斯方法在复杂数据集中,尤其是在面对不

确定性和小样本情况时,先验概率的构造尤为重

要.针对这一问题我们提出了一种方法,首先通过

数据集的训练样本得到各标签的均值、方差等模型

参数,然后在验证集上以分类准确率为目标,采用

改进的河马优化算法(IHOA)搜寻最佳分类准确

率及对应先验,最后以此作为测试集的贝叶斯最佳

先验并得到分类结果.为验证所提方法的有效性,

以二状态电路系统数据集为例,在保留易干扰分类

的阶跃波段情况下,利用IHOA来寻找特定数据

集的最优先验概率,并将IHOA与其他群优化算

法进行了寻优性能的比较,此外将该方法与其他主

流分类算法进行了对比.仿真结果表明,IHOA在

寻优方面表现出了良好的寻优性能,而改进优化算

法构造先验的朴素贝叶斯分类器(NBC-IHOA)相
比其他分类方法展现出了较高的分类准确性.

  

基于上述研究我们了解到,结合 NBC-IHOA
能有效处理复杂数据集中的不确定性和非常规小

样本情况.因此该算法能为动力学系统的模式识别

和故障分类诊断提供有力的支持,在动力学与控制

领域中具有相当程度的应用前景.随着动力学系统

的日益复杂,业界对高精度分类算法的需求将更加

迫切,我们期望本文所提的NBC-IHOA分类方法

能够为业界提供有益的参考,助力相关领域的技术

进步和应用创新.
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