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Abstract In the field of vibration control, bistable nonlinear energy sinks (BNES) represent a highly ef-
ficient vibration suppression structure where energy harvesting and vibration control performance depend
on the optimization and design of nonlinear system parameters. This paper investigates parameter identi-
fication in systems containing bistable nonlinear energy sinks. Leveraging the properties of stable equi-
librium points in bistable systems, we propose a reference point shifting method that integrates Gaussian
kernel density peak estimation to enhance the time-domain nonlinear subspace approach. Numerical
simulations and experimental validations were conducted to analyze the impacts of various noise levels on
equilibrium point estimation accuracy and nonlinear parameter identification, as well as the sensitivity of
parameter results to steady-state point estimation errors. The results demonstrate that under 20% noise
intensity, the equilibrium point estimation error remains below 10% , while the nonlinear parameter esti-
mation error is approximately 20%. This method effectively identifies cubic stiffness and Coulomb

damping parameters in bistable nonlinear energy sink systems.
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