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摘要 在振动控制领域,双稳态非线性能量阱(BNES)是一种高效的减振结构,其能量回收和振动控制性能

依赖于非线性系统的模型参数的优化与设计.本文研究了含双稳态非线性能量阱系统的参数识别问题.基

于双稳态系统稳定平衡点的性质,提出了一种参考点平移方法,利用高斯核密度峰值方法估计稳态点,对时

域非线性子空间方法进行了改进.采用了数值算例和试验进行验证,研究不同噪声环境对平衡点和非线性

参数估计精度的影响,以及稳定点估计误差对参数结果的灵敏度.结果表明,在20%噪声环境下,平衡点估

计误差在10%以内,非线性参数估计结果误差在20%左右,可以有效地辨识含双稳态非线性能量阱系统立

方刚度和库仑阻尼参数.
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Abstract In
 

the
 

field
 

of
 

vibration
 

control,
 

bistable
 

nonlinear
 

energy
 

sinks
 

(BNES)
 

represent
 

a
 

highly
 

ef-
ficient

 

vibration
 

suppression
 

structure
 

where
 

energy
 

harvesting
 

and
 

vibration
 

control
 

performance
 

depend
 

on
 

the
 

optimization
 

and
 

design
 

of
 

nonlinear
 

system
 

parameters.
 

This
 

paper
 

investigates
 

parameter
 

identi-
fication

 

in
 

systems
 

containing
 

bistable
 

nonlinear
 

energy
 

sinks.
 

Leveraging
 

the
 

properties
 

of
 

stable
 

equi-
librium

 

points
 

in
 

bistable
 

systems,
 

we
 

propose
 

a
 

reference
 

point
 

shifting
 

method
 

that
 

integrates
 

Gaussian
 

kernel
 

density
 

peak
 

estimation
 

to
 

enhance
 

the
 

time-domain
 

nonlinear
 

subspace
 

approach.
 

Numerical
 

simulations
 

and
 

experimental
 

validations
 

were
 

conducted
 

to
 

analyze
 

the
 

impacts
 

of
 

various
 

noise
 

levels
 

on
 

equilibrium
 

point
 

estimation
 

accuracy
 

and
 

nonlinear
 

parameter
 

identification,
 

as
 

well
 

as
 

the
 

sensitivity
 

of
 

parameter
 

results
 

to
 

steady-state
 

point
 

estimation
 

errors.
 

The
 

results
 

demonstrate
 

that
 

under
 

20%
 

noise
 

intensity,
 

the
 

equilibrium
 

point
 

estimation
 

error
 

remains
 

below
 

10%,
 

while
 

the
 

nonlinear
 

parameter
 

esti-
mation

 

error
 

is
 

approximately
 

20%.
 

This
 

method
 

effectively
 

identifies
 

cubic
 

stiffness
 

and
 

Coulomb
 

damping
 

parameters
 

in
 

bistable
 

nonlinear
 

energy
 

sink
 

systems.
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引言
  

非线性能量阱(nonlinear
 

energy
 

sink,NES)

是一种设计合理、具有无正线性刚度非线性振荡

器,能够在很宽的频率范围内有效抑制振动,因此

在工程结构中得到了广泛应用[1].双稳态非线性能

量阱(bistable
 

nonlinear
 

energy
 

sink,BNES)一般通过

立方刚度和负刚度元件耦合到主体系统中,形成两

个稳定点,从而实现快速的能量转移和耗散,显著提

高了NES的性能[2-6].BNES的通常采用磁悬浮[7,8]、

屈曲梁[9]和超材料[10,11]设计.研究BNES的关键参

数辨识对其设计具有重要的意义.
Kerschen[12]和Noël[13]等人系统地综述了近

20年内的非线性系统辨识原理方法与应用.其中,

经典方法包括恢复力曲面法[14-16],直接参数估计方

法[17-19],Volterra级数方法[20-22]和非线性子空间方

法(nonlinear
 

subspace
 

identification,
 

NSI)[23],一
种稀疏回归数据驱动发现非线性动力学模型的方

法(sparse
 

identification
 

of
 

nonlinear
 

dynamics,
 

SINDy)被Brunton等人[24]提出,并得到了广泛研

究.Liu[25]在磁耦合悬臂梁型双稳态结构中尝试

SINDy方 法 并 获 得 准 确 的 非 线 性 参 数.Lin等

人[26,27]结合了稀疏回归与分离最小二乘,逐级识

别线性和非线性动力系统系数,并使用物理约束联

合交替迭代方法识别迟滞模型的参数.然而基于稀

疏回归的方法一般基于显式的常微分方程,因此依

赖多个状态变量及其导数.
  

非线性子空间辨识是线性子空间辨识的扩展,

利用非线性作为系统内部反馈力的思想.该方法于

2008年被 Marchesiello等人[23]提出,识别了间隙

非线性和三次刚度非线性振子[28],后续被扩展至

频域[29].Liu等人[30]提出非线性分离策略的改进

时域子空间方法,减少了线性参数和非线性参数的

耦合误差.Liu等人[31]利用其辨识了压电悬臂梁结

构参数.Anastasio等人[32]将其应用于识别含分布

非线性的柔性梁结构.非线性子空间方法最近也与

其他新技术有效地结合得到了发展,如虚拟激励方

法[33]、预报误差方法[34]、贝叶斯模型选择[35,36]、模
糊聚类[37,38]、谐波平衡法[39]、全局模态法[40]和过

采样技术[41].
  

目前对含BNES结构的非线性子空间辨识的

研究较少.BNES具有两个稳定的平衡位置,在外

部激励下会产生复杂的动力学现象,如混沌运动或

阱内运动.对于含BNES的多自由度系统,由于负

刚度的存在,该系统的底层线性系统并不稳定,基
本线性频响函数无法被准确表征,直接使用非线性

子空间算法对该系统进行参数识别会产生无法验

证的结果.
  

本文提出了一种参考点平移方法改进的非线

性时域子空间方法,应用于含BNES系统的参数估

计问题.首先描述了含BNES结构的一般系统动力

学特性和运动方程.首先基于相对位移的概率密度

分布,使用高斯和密度峰值估计平衡点位置,通过

移动附加质量的零参考点至任意稳定点,构造系统

新的输入和输出变量.这种方法将非稳定信号转为

稳定信号来改进非线性子空间辨识方法.通过3自

由度和7自由度系统仿真算例验证所提方法的有

效性.
  

论文的结构如下:第1节介绍了一种典型的

BNES结构特性及含BNES系统的一般运动方程;

第2节提出了含BNES系统的参考点平移子空间

系统辨识方法;第3节进行了数值验证;第4节总

结了本文的研究结果.

1 含BNES系统模型

1.1 BNES结构特性
  

典型的BNES结构如图1所示,两根刚度为k
的线性弹簧与质量块m 相连接,在静力平衡位置

处,弹簧保持垂直且处于压缩状态,如b点所示.质
量块m 在水平运动过程中会产生两个稳定的平衡

位置,此时线性弹簧既不压缩也不伸长,如图中a
和c点所示.

图1 典型BNES结构
Fig.1 Typical

 

BNES
 

structure
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在外力作用下弹簧提供的非线性恢复力可以

用多项式表示:

f=k1y3-k2y (1)
  

相应的势能表示为

u=
1
4k3y

4-
1
2k1y

2 (2)
  

其中k1=-2(l0/l-1)k,k2=(l0/l3)k,l为弹簧

的初始长度,l0 为弹簧处于垂直位置时的长度,y
为质量块m 相对于静平衡位置的水平位移.非线

性恢复力与势能定性曲线如图2.这种形式典型地

对应一个双稳态系统,其势能曲线呈现“W”形,具
有两个局部最小值(稳定点)和一个局部最大值(非
稳定点).平衡点的位置是满足系统处于静止或者

动态平衡时的状态.非线性恢复力为零时,平衡点

可得

y=0,yp=
k2
k1
,yn=-

k2
k1

(3)
  

其中,平衡点y=0为非稳定的,yp 和yn 是一对对

称且稳定的平衡点.下标n和p分别代表稳定点方

向.在yp 和yn 之间存在一段负刚度区域,系统在

这个范围内恢复力方向与位移方向相反,系统的恢

复力无法有效地抑制振荡,反而增强振荡的幅度,

因此系统处于不稳定状态.当振荡在稳定平衡点附

近时,非线性恢复力起作用,但不会导致系统的失

稳,因此振荡是有限的、稳定的.

图2 非线性恢复力与势能定性曲线

Fig.2 Curve
 

of
 

nonlinear
 

restoring
 

force
 

and
 

potential
 

energy

1.2 含BNES系统运动方程
  

典型的单自由度主体结构附加BNES如图3
所示,m1 为主体结构运动质量,m2 为BNES吸振

器的运动质量;x1、x2 为主体结构与BNES的位

移.系统的运动微分方程为

m1x
··
1+c1x

·
1+k1x+c2(x

·
1-x·2)+

 knl(x1-x2)3-k2(x1-x2)=f

m2x
··
2+c2(x

·
2-x·1)+knl(x2-x1)3-

 k2(x2-x1)=0

􀮠

􀮢

􀮡

􀪁
􀪁􀪁

􀪁
􀪁􀪁

(4)
  

其中,x··1 和x·1 为主体结构加速度和速度,x··2 和x·2
为附加的BNES的加速度和速度;c1、k1 分别为主

体结构的黏性阻尼系数和刚度系数;c2、k2 和knl

分别表示附加BNES的阻尼系数、负线性刚度和立

方刚度系数.

图3 附加BNES的单自由度主体结构

Fig.3 Single
 

freedom
 

body
 

structure
 

with
 

BNES

2 含BNES结构的系统的参数辨识

2.1 非线性子空间辨识方法
  

对于含有局部非线性的n 自由度集总参数结

构,其动力学方程可以表示为[23]

Mq
··(t)+Cvq

·(t)+Kq(t)+fnl(t)=f(t)

(5)

  

其中M、Cv 和K 分别为质量、粘性阻尼系数和刚

度矩阵;q(t)和f(t)分别为位移向量和外部载荷

向量.非线性力fnl(t)可由p 个非线性基函数分量

线性组合得到[23]

fnl(t)=∑
p

i=1
μiligi(t) (6)

  

gi(t)为第i个非线性基函数,可表示为多项

式函数、分段线性函数、符号函数等.li 表示第i个

非线性力作用的位置向量,其元素取值为0、-1或

1表示作用点及其方向.
  

根据输出反馈原理[23],非线性力可被视为作

用于非线性系统底层线性部分的内部反馈力.即非
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线性力和外载荷都可作为系统的输入.通过将公式

中的非线性项移至方程右侧,公式可被改写为[23]

Mqq
··(t)+Cqq

·(t)+Kqq(t)=f(t)-fnl(t)

(7)

  

子空间方法依据输入和输出数据计算状态空间

方程,因此,定义状态向量x=[q(t) q
·(t)]T 和输出

向量u= [f(t) -μ1l1g1(t) … -μplpgp(t)],

公式(7)对应的状态空间方程可以表示为[23]:

x·(t)=Acx(t)+Bcu(t)

y(t)=Cx(t)+Du(t) (8)

Ac=
0n×n ln×n

-M-1K -M-1Cv

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁

Bc=
0n×n 0n×1 … 0n×1

M-1 M-1μ1l1 … M-1μplp

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥
􀪁
􀪁􀪁

C= In×n 0n×n  
D= 0n×n 0n×1 … 0n×1  (9)

  

其中,下标c表示其为连续时间状态空间模型,Ac、

Bc、C、D 分别为状态、输入、输出和观测矩阵.假设

输入u 为零阶保持,则连续状态空间模型可以转换

为离散状态空间模型,

xr+1=Adxr +Bdur

yr =Cxr +Dur (10)
  

其中 Ad =exp(AcΔt),Bd =[exp(AcΔt)-I]

A-1
c Bc,下标d 表示离散时间,r为采样时间点,Δt

为采样间隔.
  

通过子空间方法估计状态空间矩阵Ad、Bd、C
和D,根据频响函数矩阵计算系统参数.通过对公

式进行傅里叶变换,可以得扩展的频响函数矩

阵[23],

HE(ω)=D+C(iωI-Ac)-1Bc (11)
  

含非线性的扩展频率响应函数和基础线性系

统频率响应函数之间的关系为[23]

HE(ω)=[H(ω) H(ω)μ1I1…H(ω)μpIp]

(12)

  

利用公式可辨识系统的非线性参数.由于虚部

i的存在,通过扩展的频响函数获得的非线性系数

是和频率相关的复数,虚部理论上应为零.由于噪

声和非线性建模误差的存在会导致虚部非零.
  

由公式(12)可知,非线性子空间辨识方法将非

线性项视为底层线性系统的内部反馈力,通过扩展

的非线性频响函数与基本线性系统频响函数的关

系辨识非线性参数.

2.2 移动参考点方法
  

由1.1节可知,BNES处提供的非线性恢复力

产生两个稳定的平衡点和一个不稳定平衡点.
BNES处的非线性恢复力为

fnl=knlx1-x2  3-k2 x1-x2  (13)
  

稳定平衡点的位置是附加质量与安装点之间

相对位移的函数,非线性恢复力为0解得平衡点位

置,表示为δn 和δp.
  

在随机激励下,系统的稳态点可以通过其输出

的概 率 密 度 函 数(probability
 

density
 

function,
 

PDF)进行建模[42].输出会经历一定的时间演化,
直到其概率分布达到稳态.本文中,概率密度分布

估计使用高斯核密度估计.估计的密度峰值点可以

作为稳态点的近似值.
  

考虑BNES在稳定平衡点δ,令x2=z+δ,将
新得的位置变量z代入公式(4)中,可以得,

m1x
··
1+c1x

·
1+k1x+c2(x

·
1-z·)+

 knl(x1-z-δ)3-k2(x1-z-δ)=f

m2z
··
+c2(z

·
-x·1)+knl(z+δ-x1)3-

 k2(z+δ-x1)=0

􀮠

􀮢

􀮡

􀪁
􀪁􀪁

􀪁
􀪁􀪁

(14)

  

公式(14)中,展开含z变量的一对非线性恢复

力互为相反数,得,

knl(x1-z-δ)3-k2(x1-z-δ)

 =-[knl(z+δ-x1)3-k2(z+δ-x1)]

 =knl(x1-z)3-3knlδ(x1-z)+
(3knlδ2-k2)(x1-z)-(knlδ3-k2δ)(15)
  

考虑δ为稳定平衡点时的平衡条件和稳定性

条件

knlδ3-k2δ=0

dfnl

dδ =3knlδ2-k2=0

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁 (16)

  

根据式(16)中条件,等式(15)代入式(14),得,

m1x
··
1+c1x

·
1+k1x+c2(x

·
1-z·)+

 knl(x1-z)3-3knlδ(x1-z)2=f

m2z
··
+c2(z

·
-x·1)-knl(z-x1)3+

 3knlδ(z-x1)2=0

􀮠

􀮢

􀮡

􀪁
􀪁􀪁

􀪁
􀪁􀪁

(17)
  

由式(17)可得,移动零参考后的系统由非稳定

状态转化为稳定状态,其底层线性系统不受负刚度

的影响,使用非线性子空间方法进行系统识别.式
(17)的状态空间方程式可以表示为:

26
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x·

z·

x··

z··

􀮠

􀮢

􀮡

􀪁
􀪁􀪁

􀪁
􀪁􀪁

􀮦

􀮨

􀮧

􀪁
􀪁􀪁

􀪁
􀪁􀪁

=Ac

x
z

x·

z·

􀮠

􀮢

􀮡

􀪁
􀪁􀪁

􀪁
􀪁􀪁

􀮦

􀮨

􀮧

􀪁
􀪁􀪁

􀪁
􀪁􀪁

+Bc

f(t)

-(x1-z)3

(x1-a)2

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀮧

􀪁
􀪁
􀪁􀪁 (18)

 y=C

x
z

x·

z·

􀮠

􀮢

􀮡

􀪁
􀪁􀪁

􀪁
􀪁􀪁

􀮦

􀮨

􀮧

􀪁
􀪁􀪁

􀪁
􀪁􀪁

+D

f(t)

-(x1-z)3

(x1-z)2

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀮧

􀪁
􀪁
􀪁􀪁 (19)

  

其中下标k表示附加的BNES位于主体系统的自

由度位置.将式(19)代入式(12)中可以得到包含非

线性刚度的扩展频响函数

HE(ω)= H knlH -3knlδH  (20)

3 算例研究

3.1 算例1:含BNES的3自由度系统

考虑如图4所示的含BNES的3自由度系统.双

稳态负刚度振子位于主体系统自由度1处,在自由度

2处存在库仑摩擦.系统参数设置如下,M1=0.2
 

kg,

M2=0.3
 

kg,m1=0.1
 

kg;k1=k2=800
 

N/m,

kl1=550
 

N/m;c1=c2=c3=0.5
 

N·s/m;kn=7×

105
 

N/m3;α=0.8
 

N.两个稳定平衡点为± k1/kn,

分别为δn=-0.028
 

m,δp=0.028
 

m.

图4 含BNES的3自由度系统

Fig.4 3
 

DOFs
 

system
 

with
 

BNES
  

采样频率为512
 

Hz,时间长度为50
 

s.在m1

处受到均方根值为20
 

N的零均值高斯随机力激

励.使用四阶龙格-库塔算法数值方法计算状态变

量.在输出信号中施加零均值高斯分布噪声,噪声

等级分别为5%、10%、15%和20%.附加BNES与

安装点的相对位移响应如图5(a)所示.从图中可

以看出,相对位移表现出明显的双稳态特性.
使用高斯核密度估计方法,估计了不同噪声等

级下相对位移的概率密度分布图,如图5(b)所示.

以峰值点为稳定平衡点的估计结果,列于表1.结
果表明,估计值与真实稳定平衡点较为一致,其中误

差最大的平衡点为0.0257,相对误差为-8.2%.
将附加振子的零参考移动至表1估计的稳定平

衡点处,以δn 为例,附加振子新的位移响应信号为

z1=y1-δn,则移动后系统的输入和输出分别为:

 u= f -sign(x
·
2) (x1-z1)3 (x1-z1)2  T

 y= x1 x2 z1  T (21)
 

将参考点平移后的输出响应信号代入时域非

线性子空间算法中.通过奇异值图判定潜在线性系

统的阶次,如图6所示,模型在阶次6和7之间存

在4个数量级的数值跳跃,所以系统阶次为n=6.

图5 BNES位移响应与平衡点估计

Fig.5 BNES
 

displacement
 

response
 

and
 

equilibrium
 

point
 

estimation

表1 算例1不同噪声等级下稳定平衡点的估计结果

Table
 

1 Estimation
 

results
 

of
 

stable
 

equilibrium
 

point
 

under
 

different
 

noise
 

level
 

in
 

case
 

1

平衡点 真实值/m
估计值/m

5% 10% 15% 20%

δn -0.028 -0.0279 -0.0271 -0.0269 -0.0259

δp 0.028 0.0269 0.0271 0.0257 0.0267

图6 系统奇异值谱
Fig.6 Singular

 

value
 

spectrum
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基于式(20),获得非线性系数的随频率变化的

实部和虚部曲线,如图7所示.实线表示实部,虚线

表示虚部,黑色水平细虚线为参考值.仅在虚部值稳

定且接近零的情况下,对应频率下的实部值可作为

可靠估计值,这一范围通过红色背景进行标记.图8
展示了参数可靠估计结果的相对误差统计结果.

在不同平衡点下,随着噪声的增加,估计结果

呈现出一致的增长趋势.在20%噪声等级下,非线

性刚度的平均相对误差分别为21.6%和21.02%,

而库仑阻尼的平均相对误差为14.52%和10.18%.
值得注意的是,非线性刚度结果的误差区间较小,

表现出较高的稳定性.

图7 不同平衡点处非线性参数估计结果

Fig.7 Nonlinear
 

parameter
 

estimation
 

results
 

at
 

different
 

equilibrium
 

points

图8 不同噪声等级下非线性参数误差棒图

Fig.8 Error
 

bar
 

chart
 

of
 

nonlinear
 

parameter
 

errors
 

at
 

different
 

noise
 

levels

为了研究平衡点估计误差对结果的影响,本研

究以正平衡点0.028作为基准,分析其在0.028±
11%误差范围内(步长为0.5%)对估计结果相对

误差的灵敏度.结果如图10所示,采用中心差分方

法估计的灵敏度曲线平滑,且幅值均小于1.当平

衡点误差为负时,刚度的估计结果相对误差的灵敏

度基本保持不变,且接近0;在其他区间内,灵敏度

随噪声等级增加呈线性增长趋势.

图9 平衡点结果对估计结果的灵敏度分析

Fig.9 Sensitivity
 

analysis
 

of
 

equilibrium
 

point
 

results
 

on
 

estimated
 

results

3.2 算例2:含BNES的复杂多自由度系统
  

为进一步验证本文所提方法在具有多个双稳
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态NES的复杂结构中的参数识别效果,本文以一

个7自由度系统为例进行测试.该系统由一个5自

由度主体系统组成,并在质量块1和质量块4处分

别附加一个BNES,如图9所示.在M1 和M3 处分

别存在库伦摩擦单元.系统的具体参数为:M1=
M2=M3=M4=M5=0.2

 

kg,M6=M7=0.1
 

kg;

k1=k2=k3=k4=k5=1000
 

N/m,k1,3=k2,4=
900

 

N/m,kl1=-600
 

N,kl2=-750
 

N;c1=c2=
c3=c4=c5=0.5

 

N·s/m,c1,3=c2,4=0.6
 

N·s/m,

cm1=cm4=0.65
 

N·s/m;kn1=106
 

N/m3,kn2=

106
 

N/m3;α=β=2
 

N.其中M6 和M7 的稳态点分别

为δn1=-0.0245
 

m,δp1=0.0245
 

m,δn2=-0.0274
 

m
和δp2=0.0274

 

m.

图10 含BNES的复杂多自由度系统

Fig.10 Complex
 

multi-DOF
 

system
 

with
 

BNES
  

在M2 处施加均方根值为50
 

N的零均值高斯

随机激励,采样频率为1024
 

Hz,仿真时间长度为

50
 

s的 位 移 和 速 度 响 应.在 输 出 信 号 中,添 加

5%~20%,四个等级的零均值高斯随机噪声.
  

计算BNES的相对位移的概率密度函数,使用

峰值点法获得稳态位置结果及其相对误差,如图

11(b)和图11(d).其中结果误差最大为-7.6%.
由于噪声服从零均值高斯分布假设,因此估计值相

对于真实值的绝对值更小.
  

分别以稳定平衡点δn1 和δn2 为例,移动参考

点后,附加振子新的位移响应信号为z1=y1-
δn1,z2=y4-δn2,移动后系统的输入和输出分

别为:

u= [f -sign(x
·
1) -sign(x

·
3) -(x1-z1)3

 -(x1-z1)2 -(x4-z2)3 -(x4-z2)2]

y=[x1…x5 z1 z2] (22)

图11 两个BNES的相对位移与其平衡点估计

Fig.11 Two
 

BNES
 

relative
 

displacement
 

response
 

and
 

equilibrium
 

point
 

estimation
  

根据系统奇异值谱设定系统阶次为14.在不

同噪声等级下估计得到非线性系数的相对误差如

图12.每个噪声等级下,估计的4个非线性系数分

别用图例表示.
每个非线性系数分别采用4个稳态点组合进

行估计,分别为δn1δn2、δn1δp2、δp1δn2 和δp1δp2,这
对应图12中参数在单个噪声环境获得的4个估计

值.每个噪声环境下不同稳态点组合估计结果差异

较小.但由于估计结果同时受稳态点估计误差和信

号噪声的影响,随着噪声增加,误差棒长度和散点

分散程度也相应地增加,但相对误差总体低于

20%.

图12 算例2不同噪声等级下的识别结果平均相对误差

Fig.12 Average
 

relative
 

error
 

of
 

identification
 

results
 

under
 

different
 

noise
 

levels
 

in
 

Case
 

2

4 结论
  

本文研究了含双稳态非线性能量阱系统的辨
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识问题.首先基于稳态位置特点,基于高斯核密度

估计,从随机激励下的数据发现稳态点位置.移动

参考点到稳态点位置,使非线性子空间辨识的线性

系统部分在零位置局部稳定.从而可以有效估计出

BNES的立方刚度系数.但是本文考虑的BNES模

型由立方刚度和负线性刚度组成.对于更复杂的实

际结构,如非连续的非线性刚度,本文方法无法正

常使用.主要结论如下:
  

(1)提出的高斯核密度的峰值点方法可以有效

地识别出随机激励下双稳态系统的稳态点位置.在

20%等级噪声环境,相对误差最大不超过约8.2%.
  

(2)研究了稳定平衡点对估计结果的灵敏度,

结果表明,在正负10%平衡点估计误差内,相对误

差的灵敏度皆小于1.
  

(3)提出方法可以有效辨识含BNES和库仑摩

擦的系统中的立方刚度系数与库仑阻尼系数.在噪

声环境下20%,估计结果相对误差为20%左右.
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