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Abstract The importance of discovering significant variables from a large candidate pool is now widely
recognized in many fields. There exist a number of algorithms for variable selection in the literature.
Some are computationally efficient but only provide a necessary condition for, not a sufficient and neces-
sary condition for, testing whether a variable contributes or not to the system output. The others are
computationally expensive. The goal of the paper is to develop a directional variable selection algorithm
that performs similar to or better than the leading algorithms for variable selection, but under weaker
technical assumptions and with a much reduced computational complexity. It provides a necessary and
sufficient condition for testing whether a variable contributes or not to the system. In addition, since in-
dicators for redundant variables aren’t exact zeros, it is difficult to decide whether variables are redun-
dant or not when the indicators are small. To solve this problem, a penalty optimization algorithm is pro-
posed to ensure the convergence of the set. Simulation and experimental results verify the effectiveness

of the directional variable selection method proposed in this paper.
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