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摘要 变量选择问题在诸多领域中被广泛研究,人们发展出了许多变量选择方法.然而,有些变量选择算法

存在计算耗时问题,有些算法在检测变量是否有贡献时仅能提供必要条件,无法提供充分必要条件.本文基

于方向回归提出了一种新的高维非参数非线性系统变量选择算法,其假设要求更低,计算复杂度大幅降低,

性能优于现有的变量选择算法;且为检验变量是否对系统有贡献提供了充分必要条件.此外,由于检测变量

是否有贡献的指标并不是精确的0,因此当指标较小时,很难判断变量是否冗余.为解决这一问题,本文提出

了一种惩罚优化算法,以确保集合的收敛性.仿真算例验证了所提变量选择方法的有效性.
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Abstract The
 

importance
 

of
 

discovering
 

significant
 

variables
 

from
 

a
 

large
 

candidate
 

pool
 

is
 

now
 

widely
 

recognized
 

in
 

many
 

fields.
 

There
 

exist
 

a
 

number
 

of
 

algorithms
 

for
 

variable
 

selection
 

in
 

the
 

literature.
 

Some
 

are
 

computationally
 

efficient
 

but
 

only
 

provide
 

a
 

necessary
 

condition
 

for,
 

not
 

a
 

sufficient
 

and
 

neces-
sary

 

condition
 

for,
 

testing
 

whether
 

a
 

variable
 

contributes
 

or
 

not
 

to
 

the
 

system
 

output.
 

The
 

others
 

are
 

computationally
 

expensive.
 

The
 

goal
 

of
 

the
 

paper
 

is
 

to
 

develop
 

a
 

directional
 

variable
 

selection
 

algorithm
 

that
 

performs
 

similar
 

to
 

or
 

better
 

than
 

the
 

leading
 

algorithms
 

for
 

variable
 

selection,
 

but
 

under
 

weaker
 

technical
 

assumptions
 

and
 

with
 

a
 

much
 

reduced
 

computational
 

complexity.
 

It
 

provides
 

a
 

necessary
 

and
 

sufficient
 

condition
 

for
 

testing
 

whether
 

a
 

variable
 

contributes
 

or
 

not
 

to
 

the
 

system.
 

In
 

addition,
 

since
 

in-
dicators

 

for
 

redundant
 

variables
 

aren􀆶t
 

exact
 

zeros,
 

it
 

is
 

difficult
 

to
 

decide
 

whether
 

variables
 

are
 

redun-
dant

 

or
 

not
 

when
 

the
 

indicators
 

are
 

small.To
 

solve
 

this
 

problem,
 

a
 

penalty
 

optimization
 

algorithm
 

is
 

pro-
posed

 

to
 

ensure
 

the
 

convergence
 

of
 

the
 

set.
 

Simulation
 

and
 

experimental
 

results
 

verify
 

the
 

effectiveness
 

of
 

the
 

directional
 

variable
 

selection
 

method
 

proposed
 

in
 

this
 

paper.
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引言
  

非线性系统辨识[1,2]已被广泛应用于机械工

程、控制工程、电气和电子工程以及化学工程等领

域.变量选择通常是高维非参数非线性系统辨识的

前提条件,因此本文研究的变量选择问题非常重

要.从高维非线性系统的所有候选变量中剔除多余

的变量,可以有效地简化非线性系统的辨识问题,

而且不会降低辨识模型的精度.例如,预先使用变

量选择方法辨识Volterra级数中的重要时延项,可
以简化Volterra级数的辨识.此外,变量选择方法

还可用于全局敏感性分析,发现非线性系统中的重

要因素或变量.
本文研究的非线性系统是一个离散非参数非

线性系统,

Y(k)=f[X1(k),X2(k),...,Xp(k)]+
 v(k), k=1,2,…,N, (1)

其中,v(k)表示均值为0、方差有限的独立同分布

(independent
 

and
 

identically
 

distributed,
 

IID)噪
声序列,v(k)与X(k)相互独立,Y(k)是系统输出,

N 表 示 测 量 数 据 的 长 度.回 归 向 量 X (k)=
[X1(k),…,Xp(k)]T 包含所有可能贡献的输入变

量.非线性函数f(·)的结构形式未知.该函数可

表示一大类非线性函数.例如,如果

X(k)=[u(k-1),…,u(k-nu)]T,or
  

X(k)=[y(k-1),…,y(k-ny),u(k-1),…,u(k-nu)]T

(2)

将变为著名的有限脉冲响应非线性系统[3]和带外

界输入的非线性自回归系统(NARX)[4],式中u 和

y 分别表示系统的输入与输出,nu 和ny 分别表示

所选至当前时刻的输入和输出的步数.
  

常用的非线性系统辨识方法包括基函数展开

方法,如多项式、傅里叶级数、广义正交基和小波方

法.然而,当待辨识系统缺乏先验信息时[5,6],基函

数的选择将存在困难.核函数和局部多项式方法在

先验信息较少的情况下,也能辨识非线性系统,并
在某些一般化假设下得到渐进收敛结果.然而,这
些方法为非参数化方法,未能利用现有非线性系统

的结构对系统进行表征,导致其收敛速度较慢,并

在高维情况下,常常受到维数灾难[7]的影响.
  

在许多实际问题中,系统通常是稀疏的,也就

是说,不是所有的变量Xi(k)(i=1,…,p)都对输

出Y(k)有贡献.为了降低系统维度,需要检测和剔

除非贡献变量Xi(k),这也被称为变量选择问题.
从众多候选变量中找出真正有贡献的变量对非线

性系统的辨识至关重要.
  

高维非参数非线性系统变量选择和辨识的目

标首先是检测出贡献变量X1(k),…,Xq(k)或非

贡献变量 Xq+1(k),…,Xp(k),并剔除非贡献变

量,然后利用贡献变量使用非参数方法辨识非线性

系统.对于线性系统,人们已经提出了很多著名的

变量选择方法,例如,非负绞杀(nonnegative
 

gar-
rote)[8]、最小绝对收缩和选择算子(LASSO)[9]、自
适应 LASSO(adaptive

 

LASSO)[7]、组 LASSO
(group

 

LASSO)[10]、最小角回归(least
 

eadge
 

re-

gression,
 

LARS)[11]和 带 平 滑 削 边 绝 对 偏 离

(smoothly
 

clipped
 

absolute
 

deviation,
 

SCAD)[12].
然而,当系统是非参数非线性系统时,若直接使用

以上变量选择方法,可能会得到错误的结果.
  

传统非线性系统变量选择方法中,通过利用局

部线性估计方法得到关于任意局部变量X0 的导

数∂f/∂Xi,通过导数是否为0判断变量贡献与否.
然而,当变量数量很大时,存在维数灾难问题.此
外,局部变量选择方法仅使用与X0 相邻的局部数

据,如果函数f(·)是全局的,那么局部变量选择

方法就会遗失大量有用信息.且局部导数是否为0
并非变量选择的充分条件,而是必要条件.

  

在统计领域,人们常使用充分降维(sufficient
 

dimension
 

reduction,
 

SDR)理论进行变量选择.例
如,Cook[11]通过边际坐标检验在无模型变量选择

和SDR之间建立了重要联系.Li[12]等人提出了基

于网格化χ2 检验的无模型变量选择方法.然而,这
些基于检验的无模型变量选择方法存在一些缺点,

如计算复杂、精度低、不稳定等.另一类无模型变量

选择方法是通过结合正则化方法和SDR方法提出

的.例如,Ni等[13]在完全降维的情况下整合了

LASSO收缩法,得到了一个逆回归估计器.Li和

Yin[14]引入了正则化来实现变量选择和降维估计.
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此外,Bondell和Li[15]为整个逆回归估计器家族提

出了一个通用的收缩估计策略,允许同时进行降维

和变量选择,并证明了该新型估计器在没有任何常

规模型的情况下实现了一致的变量选择.Chen
等[16]提出了一种坐标无关的稀疏估计方法,该方

法实现了稀疏的充分降维,并有效筛选了不相关的

冗余变量.然而,这些方法均通过迭代程序完成,效
率较低,且计算复杂性可能会影响其总体效率.

  

为了克服上述问题,本文基于方向回归,提出

了一种高维非参数非线性系统的变量选择方法,该
方法不受维数灾难的影响.此外,由于表征冗余变

量的指标并不是精确的0,当指标较小时,很难判

断变量是否冗余.为解决这一问题,本文提出了一

种惩罚优化算法来保证集合的收敛性.

1 导数方法和维数灾难
  

每个变量Xi 对函数f 或输出Y 的贡献可以通

偏导数∂f/∂Xi 来估计.如果Xi 不贡献,则∂f/∂Xi≡
0.因此,识别Xi 是否有贡献的常用方法是利用局

部线性估计方法[17]估计导数∂f/∂Xi.在任何一点

X0=(X0
1,…,X0

p)T,分别用α=f(x0)和α1=

∂f
∂X1

,…,∂f
∂Xp  

T

X0
表示f 的值及其在X0 处的

导数∂f
∂Xi

(其中i=1,…,p),则二者的估计值可通

过式(3)计算[18].

min
α̂0,α̂1
∑
N

k=1

(Y(k)-{α^0+α^T1[X(k)-

 X0]})K[X(k)-X0], (3)

其中 K(·)是多变量核函数.局部线性估计方法

已经被深入研究[4,17],并得到了α^0→α0、α^1→α1 的

收敛结果.该方法属于局部平均方法,对非参数非

线性系统具有重要意义.然而,所有局部平均方法

都会受到维数灾难的影响.为阐明这一问题,以式

(1)表示的系统为例,设x(k)=[u(k-1),…,

u(k-p)],假设输入为[-1,1]上均匀分布的IID
随机序列,希望利用输入输出数据估计函数f(x0)

在X0=(0,0,…,0)T 处的值.由于噪声和不确定

性,需要在X0=(0,0,…,0)T 周围有足够的测量

值X(k)来 可 靠 地 评 估 α0 =f (x0)和 α1 =

∂f
∂X1

,…,∂f
∂Xp  

T

X0
.简言之,假设X0=(0,0,…,

0)T 的邻域是一个以原点为中心,半径为0.1的

球,从 而 任 意 数 据 X (k)落 在 邻 域 的 概 率 是

πp/20.1p

Γ(p/2+1)
1
2p
,这里Γ 表示Γ 函数.假设在X0 的

邻域内至少需要10个数据以得到f(x0)的可靠估

计,那么数据总量 N 需满足 N
πp/20.1p

Γ(p/2+1)
1
2p≥

10,即

N ≥10×(20)p ×p/2)! (πp/2)

 =
1.24×108,

    

p=6

4.02×1013,
    

p=10 , (4)

上式意味着即使对于适当大小的系统阶数p,为得

到可靠的非参数估计,所需数据总量依然巨大.
  

维数灾难是所有局部平均方法的一个重要问

题,并不是系统辨识领域所独有的.为了不受维数

灾难的影响,基于方向回归,本文提出了一种新的

变量选择方法.

2 基于方向回归的变量选择方法

2.1 方向回归
  

Li和 Wang[19]提出的方向回归是一种有效的

充分降维方法,它结合了基于切片逆回归[20,21]和

切片平均方差估计[22]这两种降维估计方法的优

点.方向回归方法如下.
  

变量X 的期望值和协方差表示为:

EX=(μ1,...,μp)T=μ,

E[(X-μ)(X-μ)T]=Σ . (5)

定义Z=Σ-1/2(X-μ)为标准化变量.(Z
~,Y

~)与(Z,

Y)独立且同分布.在方向回归中,Li和 Wang[19]定

义了A0(Y,Y
~)=E[(Z-Z

~)(Z-Z
~)T|Y,Y

~],即把

方向(Z-Z
~)回归到函数空间上.进一步,定义了

B0(Y,Y
~)=2Ip -A0(Y,Y

~)和G0=E[B0(Y,Y
~)2].

  
  

根据SY|Z 和SY|X 不变原则[23],在E(Z|βTZ)

是Z 的线性函数和Var(Z|βTZ)是非随机的假设

下,有Σ-1/2Span(G0)⊆SY|X.当X的分布是椭圆对

称的,如正态分布、t分布和拉普拉斯分布,这些条

件均得到满足.
  

因此,定义

 A(Y,Y
~)=E[(X-X

~)(X-X
~)T|Y,Y

~],

 B(Y,Y
~)=2Σ-A(Y,Y

~), (6)

其中,(X
~,Y

~)与(X,Y)独 立 且 同 分 布,并 定 义
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G=E[B(Y,Y
~)2].

  

将Y(k)落在数据切片Jk 上的概率记为pk =
P(Y∈Jk),其中k=1,…,H,H 为切片的数量.定

义Uk =E(X|Y∈Jk),Vk =E(XXT|Y∈Jk)-

Σ,则矩阵G 可以表示为如下离散形式F[19]:

F=2∑
H

k=1
pkV2

k +2∑
H

k=1
pkUkUT

k  2+

 2∑
H

k=1
pkUT

kUk  ∑
H

k=1
pkUkUT

k  . (7)

定义ω1 ≥ω2≥…≥ωK ≥ωK+1=…=ωp =0为

F 的特征值,β1,β2,…,βp 为F 相应的特征向量.

2.2基于方向回归的变量选择方法
  

假设Y 独立于XAC,对于给定的XAC,即

Y⊥⊥XAC |X*
A (8)

其中,⊥⊥代表统计独立性,A* 是贡献集合.AC 是

A* 的补集,表示非贡献集合.需要注意的是,根据

贡献变量的定义,如果Xj 是一个贡献变量,即j∈
A*,那么βij≠0,1≤i≤K;如果j∈AC,那么βij =
0,1≤i≤K.对于K+1≤i≤p,特征值ωi 为0. 
 

  

根据特征向量βi 的性质,定义新指标δ:

δ=∑
p

i=1
ωi|βi|, (9)

其中|βi|= (|βi1|,|βi2|,...,|βip|)T,1≤i≤
p.δ 可以用来检测贡献变量,并剔除非贡献变量.
δj 是新指标δ 的第j个元素,如果δj=0,则Xj 不

贡献;如果δj ≠0,则Xj 贡献,而A* ={j:δj ≠
0}.

  

将F^ 与δ^ 分别作为F 和δ 的估计值,定义ω^1,

…,ω^p 为F^ 的特征值,β
^
1,β
^
2,…,β

^
p 为相应的特征

向量.在实际情况下,由于噪声干扰和数据长度有

限,冗余变量的δ^j 可能是接近于0的数值.由于δ^j
并不精确为0,当其值较小时,很难判断对应变量

是否冗余.为解决这一问题,本文提出了一种惩罚

优化算法来保证集合的收敛性.定义

ci(N)=δ^i, c0i=δi, i=1,…,p, (10)

其中,N 清楚地表明,评估值是从数据k=1,…,N
获得的.Li和 Wang[19]已根据Lindeberg-Levy中

心极限定理证明,在正则条件下,

F^ =F+OP(N-1/2), (11)

其中,OP(N-1/2)代表随机变量在概率上与 N-1/2

处于同一数量级.因此,

ci(N)-c0i=OP(N-1/2), (12)

考虑如下优化问题:

 min
ηi

J(ηi,N)=min
ηi

{[ηi-ci(N)]2+λ(N)|ηi|}

s.t.
      

0<λ(N)→0,

1
Nλ(N)

→0
  

as
  

N → ∞ , (13)

其中λ(N)是正则化参数.这是一个容易解决的一

维凸优化问题.
  

基于方向回归的变量选择方法的算法,可以总

结为如下步骤:
  

步骤1 通过[Y(k),X(k)]对数据集[Y(k),

X(k)],k=1,…,N 重 新 排 序,其 中 Y(1)≤
Y(2)≤…≤Y(N).设 H 为切片数,m 为每个片段的

数据点数,N=Hm.将数据集Y(1),…,Y(N)均匀地

划分为 H 个片段.
  

步骤2 计算U^k、V
^
k(k=1,…,H),和

F^ =2∑
H

k=1
pkV

^2
k +2∑

H

k=1
pkU

^
kU
^T

k  2+

 2∑
H

k=1
pkU

^T
kU
^

k  ∑
H

k=1
pkU

^
kU
^T

k  . (14)
  

步骤3 对F^ 进行谱分解,得到特征值ω^1 ≥

ω^2≥…≥ω^p≥0和相应的特征向量β
^
1,β
^
2,...,β

^
p .

  

步骤4 计算指标δ^ =∑
p

i=1
ω^i β

^
i .

  

步骤5 求解最小化问题

 min
ηi

ηi-δ^i  2+λ(N)ηi  ,i=1,2,…,p,

式中,随着N →∞,λ(N)→0,O(N-1/2)/λ(N)→
0.将上述最小化解记为η*

i (N).
步骤6 如果η*

i (N)=0,Xi 没有贡献;如果

η*
i (N)≠0,Xi 有贡献.

3 数值仿真

在许多工程实际中,贡献变量的数量相较于系

统中可能存在的变量数量而言,通常较少.通过采用

变量选择方法识别贡献变量和非贡献变量,可以剔

除冗余变量,降低系统维度.这不仅减少了系统对噪

声的敏感度,还有效地避免了维数灾难的影响.
例

 

1: 考虑一个8维非线性系统

Y(k)=f[X1(k),X2(k),…,X8(k)]+v(k)

=α1sin[X1(k)X2(k)]+α2[X3(k)-0.5]2+
α3X4(k)+α4X5(k)+α5X6(k)X7(k)+
α6X7(k)2+α7cos[X6(k)X8(k)]+
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α8e
-|X8(k)|+v(k), k=1,2,…,N , (15)

这里α1=α3=α5=α6=α7=α8=0,
 

α2=0.5,
 

α4=1.
  

该系统函数形式f 是未知的.Xi(k)是均值为

0、方差为1的IID高斯随机序列,噪声也是均值为

0、标准差为0.5的IID高斯随机序列.设 H=10,

N=4000,λ(N)=2×N-2/5.对本文提出的变量选

择方法进行100次蒙特卡罗仿真,结果如表1所

示.结果表明,所提方法每次都正确选取了贡献变

量X3(k)和X5(k),从未识别非贡献变量.表2列

出了中间变量δ^i 和η*
i (N)的值,表明所提算法第

五步可有效解决多小是足够小的问题.表1和表2
的结果表明所提出的惩罚优化算法可以保证贡献

集合收敛,即可利用指标η*
i (N)是否为0消除冗

余变量.

表1 在100次蒙特卡洛中选择Xi 的次数

Table
 

1 Number
 

of
 

Xi
 was

 

selected
 

in
 

100
 

Monte
 

Carlo
 

runs

变量 X1 X2 X3 X4 X5 X6 X7 X8

选中次数 0 0 100 0 100 0 0 0

表2 基于DR变量选择方法下δ^i 和η*
i (N)的值

Table
 

2 Values
 

of
 

δ^i and
 

η*
i (N)

 

using
 

DR-based
 

variable
 

selection
 

approach

i 1 2 3 4 5 6 7 8

δ^i 0.07 0.08 3.32 0.10 2.61 0.08 0.10 0.09

η
*
i (N) 0 0 2.96 0 2.25 0 0 0

  

本文进一步研究了样本量对挑选出正确变量

准确性的影响.图1显示了当噪声是一个均值为

0、标准差为0.1的IID高斯随机序列时,变量被正

确选择的正确率与总数据长度N 的关系.计算结果

图1 100次蒙特卡洛下选择正确贡献变量的正确率
Fig.1 The

 

rates
 

of
 

selecting
 

the
 

correct
 

contributing
 

variables
 

in
 

100
 

Monte
 

Carlo
 

runs

表明,如果数据长度 N 大于800,100次蒙特卡洛

仿真结果显示识别正确变量的正确率趋于1.
  

最后,将本文所提变量选择方法和互信 息

法[24]进行比较,后者是最流行的变量选择方法之

一.表3显示了每个输入变量Xi 和输出Y 之间的

互信息.结果显示,贡献变量的互信息大于非贡献

变量.然而,尽管非贡献变量的互信息很小,但并不

完全为0.因此,如何根据微小互信息判断变量是

否贡献成为亟待解决的问题.常规的方法是应用统

计假设检验,然而假设检验的计算成本很高,且对

于高维系统并不可靠.此外,互信息的计算也很耗

时,例如,数据长度 N=4000时的计算时间约为

4480
 

s,数据长度N=1000时的计算时间约为291
 

s.
与此相反,本文所提基于方向回归的变量选择方法

是对Y 的一维逆回归,计算简单且高效.例如,在
数据长度N=4000时,本文提出的变量选择方法

的计算时间约为0.74
 

s,数据长度 N=1000时的

计算时间约为0.69
 

s.

表3 各输入变量和输出变量之间的互信息

Table
 

3 Mutual
 

information
 

between
 

each
 

input
 

variable
 

and
 

output
 

variable

MI(Xi,
 

Y)X1 X2 X3 X4 X5 X6 X7 X8

#互信息0.0470.0460.5290.0390.3120.0420.0390.038

为进一步说明变量选择对系统辨识有帮助,我
们用最后50个数据作为验证数据.对于每个验证数

据X(k)=[X1(k),…,X8(k)]T,如前所述,从第一

个训练数据N=3950计算出两个估计输出Y^(k)=

f
^[X(k)],k=1,…,50.前者是基于将例1直接作为

一个8维系统进行辨识.第二个是通过使用提出的

变量选择方法对二维未知系统g(·)的辨识

Y(k)=g[X3(k),X5(k)], (16)

在本文中,我们使用式(3)描述的局部线性估计方

法来辨识非参数非线性系统.
  

为了能够比较这两个估计方法,计算两种方法

的拟合优度(goodness
 

of
 

fits,
 

GoF):

 G= 1- ∑[Y(k)-Y^(k)]2

∑ Y(k)-
1
50∑Y(k)􀭠

􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 2
􀮠

􀮢

􀮡

􀪁􀪁
􀪁􀪁

􀮦

􀮨

􀮧

􀪁􀪁
􀪁􀪁 ×100%

(17)

其中,G 表示拟合优度,Y(k)表示测量的输出,
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Y^(k)表示预测的输出.图2显示了实际结果(实
线)与通过直接辨识G=0.63的8维系统(点线)和
辨识G=0.94的二维系统(虚线)的估计结果.显
然,如果能够首先检测并去除非贡献变量,那么效

率将得到大幅提高.

图2 全维识别(点线)和低维识别(虚线)模型的
估计结果和实际(实线)测量结果

Fig.2 Predicted
 

results
 

for
 

the
 

full-dimensional
 

identification
 

(dotted
 

line)
 

and
 

low-dimensional
 

identification
 

(dashed
 

line)
 

models
 

and
 

actual
 

(solid
 

line)
 

measurements

4 结论
  

本文提出了一种新的高维非参数非线性系统

变量选择算法,该算法不受维数灾难的影响,解决

了传统导数方法面临的一个主要难题.此外,该变

量选择方法的数值算法相当简单明了,而且具有集

合收敛性.最后,由于方向回归可以导出足够的降

维空间,因此基于方向回归的变量选择方法可以从

候选变量中充分检测出所有贡献变量,故而本文所

提方法为变量选择提供了一个充分必要条件.
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