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摘要 时滞微分方程广泛应用于描述系统当前状态与过去状态之间的动态关联,涵盖生物力学、工程学、物

理学等多个领域,尤其适用于含时滞的复杂系统建模.由于时滞效应能够显著影响系统的动态行为、控制效

果和稳定性,准确识别时滞参数成为动力学系统研究中的核心挑战之一.为提高辨识精度和效率,本文提出

了一种基于伴随方程和梯度下降算法的时滞微分方程参数辨识算法.该算法利用伴随方程的解析特性,通

过逆向求解,精确计算系统响应对参数的梯度,从而实现高效的参数更新.本文给出了算法的数学推导,并

基于Python平台开发对应计算框架,使用自动更新,动态插值的解类并封装了一个支持求解时变参数的时

滞微分方程求解器.利用简化算法和并行计算,优化求解流程并降低计算复杂度,增强实际应用中的可操作

性.为了验证算法的有效性,本文以一个二自由度非线性振子系统为例,进行了数值仿真实验.仿真结果表

明,该方法能够准确识别系统的时滞参数.
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Abstract Delay
 

differential
 

equations
 

are
 

widely
 

used
 

to
 

describe
 

dynamic
 

connections
 

between
 

system􀆶s
 

current
 

states
 

and
 

its
 

past
 

states.
 

They
 

are
 

particularly
 

suited
 

for
 

modelling
 

complex
 

systems
 

with
 

de-
lays,

 

such
 

as
 

dynamic
 

systems
 

arisen
 

from
 

biology,
 

engineering
 

and
 

physics.
 

Since
 

delay
 

effects
 

can
 

sig-
nificantly

 

impact
 

system
 

dynamic
 

behaviour,
 

control
 

performance
 

and
 

stability,
 

accurate
 

identification
 

of
 

delay
 

parameters
 

has
 

become
 

a
 

core
 

challenge.
 

To
 

improve
 

both
 

accuracy
 

and
 

efficiency,
 

this
 

study
 

pro-
poses

 

a
 

delay
 

parameter
 

identification
 

algorithm
 

based
 

on
 

adjoint
 

equations
 

and
 

the
 

gradient
 

descent
 

method.
 

By
 

leveraging
 

the
 

analytical
 

properties
 

of
 

adjoint
 

equations,
 

this
 

method
 

solves
 

the
 

adjoint
 

sys-
tem

 

backward
 

in
 

time,
 

allowing
 

for
 

the
 

precise
 

calculation
 

of
 

the
 

gradient
 

of
 

the
 

system
 

response
 

with
 

re-
spect

 

to
 

the
 

parameters,
 

thus
 

facilitating
 

efficient
 

parameter
 

updates.
 

This
 

study
 

details
 

the
 

mathemati-
cal

 

derivation
 

of
 

the
 

algorithm
 

and
 

develops
 

a
 

computational
 

framework
 

on
 

the
 

Python
 

platform,
 

incor-
porating

 

automatic
 

updates,
 

dynamic
 

interpolation,
 

and
 

a
 

solver
 

for
 

delay
 

differential
 

equations
 

with
 

time-varying
 

parameters.
 

By
 

simplifying
 

the
 

algorithm
 

and
 

utilizing
 

parallel
 

computing,
 

the
 

solution
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process
 

is
 

optimized
 

to
 

reduce
 

computational
 

complexity,
 

enhancing
 

its
 

practical
 

applicability.
 

To
 

vali-
date

 

the
 

effectiveness
 

of
 

the
 

algorithm,
 

a
 

numerical
 

identification
 

experiment
 

is
 

conducted
 

for
 

a
 

two-de-
gree-of-freedom

 

nonlinear
 

spring-mass
 

system.
 

The
 

results
 

demonstrate
 

that
 

the
 

method
 

accurately
 

iden-
tifies

 

the
 

system
 

delay
 

parameters
 

while
 

maintaining
 

a
 

low
 

error
 

margin.

Key
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引言
  

时滞微分方程(delay
 

differential
 

equations)是

一类特殊的泛函微分方程,具有与传统常微分程

(ordinary
 

differential
 

equations)不同的无穷维度、

滞后性和继承性特点[1].它描述了动态系统当前状

态与过去状态之间的关系,能够比较完整、真实地

反映实际系统的状态.根据系统当前状态与过去状

态、未来状态的关联性,时滞微分方程可被归纳为

滞后型、中立型、超前型以及混合型方程.
随着时滞微分方程理论的发展,使用该类方程

对系统进行建模的方法在动力学研究中被广泛采

用,时滞逐渐成为动力学系统建模中不可缺少的重

要变量.在物理学、信息科学、化学、工程学、经济学

和生物数学等领域,时滞已成为研究重点之一,旨

在揭示时滞变化对系统特征所产生的影响[2-5].对

于动力学控制系统而言,时滞所带来的滞后效应将

不可避免地影响系统的响应、控制效果和稳定性.
忽略时滞常常会导致系统出现较差的力学特性.因
此,在面对未知力学系统时,首先需要对目标力学

系统进行研究和学习.系统参数辨识作为工程中研

究未知系统的第一步,其具有识别系统结构,标定

参数大小,分析系统特性,找到关键变量等重要作

用,诸多研究均关注了未知系统的参数识别问

题[6-8].然而与一般系统有所不同的是,时滞在实际

力学系统中难以直接测量和估计,这对系统的精确

建模和仿真构成了巨大的挑战.因此,在动力学系

统中开展针对时滞的辨识工作有较高价值.
  

目前,主流时滞识别方法主要有如下几种:一
是采用传统含梯度的优化搜索方法,例如改进最小

二乘法[9]、样条曲线法[10]等.此类方法将时滞微分

方程近似为常微分方程,并将时滞独立表示和计

算.二是采用启发式算法,避开对梯度的直接计算,

例如遗传算法[11]、粒子群算法[12]、贝叶斯优化[13]

等对全局最优较敏感的方法.此类方法使用代理模

型,避免对系统参数直接求梯度,能够在先验知识

较少的情况下对未知系统展开直接研究,并且有一

定的工程部署潜力.三是利用神经网络的非线性拟

合能力和时间序列预测功能进行时滞系统辨识.在
建模、预测和控制方面,此类方法也被称作数据驱

动的神经网络动力学系统辨识.该方法革新了复杂

系统研究的思路.数据驱动的方法对于系统的物理

模型和先验知识并不依赖,相反,其通过系统的输

入输出信号来识别未知模型.基于稀疏识别方法的

时滞 微 分 方 程 重 构[14],深 度 神 经 网 络 时 序 预

测[15,16],以及基于神经网络的神经时滞微分方

程[17,18]等都展现了数据驱动方法对未知系统辨识

问题的处理能力.
  

为了更精确地从先验物理模型出发,本文围绕

梯度优化搜索方法,采用了一种基于伴随方程[19]

以及梯度下降法的算法对含时滞的动力学系统进

行辨识和标定.该方法能够利用参数未知的物理模

型,对系统初始条件、各种设定参数以及控制量进

行分析,给出当参数数值变化时,系统响应与参数

的梯度关系.首先,将描述算法的数学原理,以及搭

建在Python平台的时滞微分方程识别算法的计算

逻辑和框架.辨识算法包含了一个时变时滞微分方

程求解器,逆向伴随微分方程求解器,以及一个并

行梯度求解器.随后,一个基于二自由度弹簧振子

的数值仿真实验将用来检验算法的有效性.

1 伴随梯度法建模
  

含时滞的动力学系统识别问题可以用一个受

微分方程约束的优化问题表示.这种表示方法将引

入一个损失函数来描述辨识结果和实际物理模型

的差异.通过对差异的一系列数学处理,便能够计

算相应参数的梯度.伴随梯度法是通过伴随方程的

构建,以避免对微分方程约束的非线性泛函优化问
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题直接进行求解,转而通过微分方程在伴随空间的

计算,间接给出系统参数的梯度.该方法不限制微

分方程的非线性程度,非线性时滞微分方程可以直

接进行计算.以单时滞系统为例,以下给出通过伴

随方程求解系统参数梯度的过程.
具有单时滞的时滞微分方程可以表示为:

x·(t)=f[x(t),x(t-τ),p], 0<t≤T

x(t)=x0(t), -τ≤t≤0 (1)

其中x∈ℝn 是系统的状态变量,f(·)是一个非

线性函数,τ是系统的常时滞,T 表示系统的终值

时刻,x0 表示系统的初始条件函数,p 表示系统除

时滞以外的参数,p=[p1,p2,…,pm]T∈ℝm.假

设用一组识别参数生成的响应记为x^,通过其与系

统真实响应x 之差的内积可以构造出一个损失函

数J.使用该损失函数构建的如下优化问题能够用

于描述系统参数与时滞的辨识任务:

argmin
p,τ

 J(x^,τ,p)

 =∫
T

0
<x^(t)-x(t),x^(t)-x(t)>dt

sub. x̂
·(t)=f[x^(t),x^(t-τ),p]

 x^(t)=x^0(t,p) (2)
  

与一般优化问题不同的是,公式(2)需要在优

化的同时处理时滞微分方程约束.对此泛函优化问

题,引入伴随方程和伴随向量,通过伴随空间可直

接求解关于系统参数的梯度.

1.1 伴随方程
  

对于公式(1)中的时滞微分方程,利用泛函优

化中 的 常 用 工 具 拉 格 朗 日 恒 等 式 (Lagrange
 

equality),可以得到一个新的微分方程,该微分方

程以w(t)∈ℝn 为状态变量,以-τ为时滞.该方程

的表达式如下所示:

dw(t)
dt =-

∂fT(t)
∂x^

w(t)-

 ∂f
T(t+τ)
∂x^

w(t+τ), t≤T (3)
  

该微分方程与公式(1),在形式和时滞表达上

完全匹配.公式(3)以-τ为时滞,是一个反向的时

滞微分方程,描述了一个终值问题,并沿着时间轴

逆向进行演化;公式(1)是一个正向的时滞微分方

程,描述了一个初值问题,沿着时间轴正向进行演

化.因此,公式(3)又被称作原时滞微分方程的伴随

方程.w(t)也被称为伴随变量,可参与并简化系统

参数梯度的计算.由于时滞的存在以及方程(3)对
系统未知参数的依赖,很难提前给出w(t)的稳定

性.因此,直接通过方程(3)的形式与数值积分方法

在给定的边界条件以及有限的时间区间[0,T]上
求解w(t),得到的数值解向量即可用于计算下面

一节所描述的梯度表达式.

1.2 梯度表达式
  

为了求解系统响应对系统参数与时滞的梯度,

需要对时滞微分方程进行变分:

 δx^'(t)=
∂f
∂x
δ̂x^(t)+

∂f
∂x^τ

δx^τ +
∂f
∂p
δp(t)+

∂f
∂x^τ
∂x^τ
∂τδτ

(4)

其中x^τ 为x^(t-τ)的简写.将该方程两边同时左

乘wT
i(t),其中i=1,2,…,n,并对时间t在区间[0,

T]上积分,利用分步积分法分离方程的左端项.此
外,令wi(T)=[0,…,0,1i-th,0,…,0]T,代入方程

中可得wT
i(T)δx(T)=δxi(T).公式(4)在上述变

换下可以得到如下结果:

 δxi(T)=wT
i(0)δx(0)+∫

T

0
[w'i(t)+

∂fT

∂x^
wi(t)+

∂fT(t+τ)
∂x^

wi(t+τ)]Tδx^(t)dt+∫
T

0
wT

i(t)·

∂f
∂p

δpdt-∫
T-τ

-τ
wT

i(t+τ)∂f
(t+τ)
∂x^

dx^(t)
dtδτdt

(5)

 

可以清楚地看到公式(5)中出现了伴随方程的

表达式,将其消去后,令δp 和δτ趋向于0,则可以获

得系统参数与时滞在时滞微分方程约束下的灵敏

度,即系统状态分别对系统参数及对时滞的偏导数:

 
∂x^i(T)
∂p =∫

T

0
wT

i(t)
∂f
∂p
dt,

 
∂x^i(T)
∂τ = -∫

T-τ

-τ
wT

i(t+τ)∂f
(t+τ)
∂x^

dx^(t)
dt dt

(6)

  

上述表达式利用伴随变量wi(t)给出了系统

参数和时滞与系统响应间的关系.利用公式(2)中
的损失函数J 和公式(5),并在时间上进行离散,

便可将损失函数关于系统参数与时滞的梯度表示

为如下:

 ∂J∂p=2Δt∑
N-1

j=0
∑
n

i=1

[x^i(tj)-xi(tj)]
∂x^i(tj)
∂p

,
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 ∂J∂τ=2Δt∑
N-1

j=0
∑
n

i=1

[x^i(tj)-xi(tj)]
∂x^i(tj)
∂τ

(7)

其中,Δt为离散的时间步长,N 为总采样数据个

数.只要获得公式(3)和(6)中所有矩阵的数据,在
给定系统响应情况下,优化一个未知的时滞微分方

程便成为可能.需要说明的是,上述推导可以推广

应用于多参数多时滞模型,多参数多时滞优化功能

已经集成到下文描述的优化框架内.

2 Python计算框架构建
  

在Python平台上,搭建一个针对上述优化问

题的计算框架.该计算框架的目的是快速完成关于

时滞微分方程优化任务的数值计算.该框架分三个

子模块:一个是正反向时滞微分方程的数值积分模

块,并集成了含时变参数的方程求解功能;一个是

并行的梯度解算器;一个是梯度优化器.接下来将

着重说明三个子模块的构建方法和计算逻辑.

2.1 微分方程求解器
  

时滞微分方程求解器是整个优化算法功能的

支柱.在算法中,两个时滞微分方程需要串行求解,

其中在求解伴随时滞微分方程时,求解器需要接受

时变参数,并且沿时间轴逆向求解.此外,时滞微分

方程的求解需要回溯系统的历史响应,且每一时间

步计算均需要回溯.需要回溯的历史数据所对应的

时间节点并不一定是已经记录在内存中的节点,为
了保证回溯正常进行,需要实现对任意时刻系统解

数据的索取功能.
  

使用类V来表示时滞微分方程的解.该类通过

时滞微分方程的初始条件进行实例化,有两个便于

时滞微分方程求解的功能:记录并更新时滞微分方

程求解器返回的某时间步系统状态变量数据;对给

定时间步的数据进行插值索取.这两个功能均通过

三次Hermite插值实现.以n 点插值为例,给出获

得任意时间步插值数据的数学表达.设x^i∈c1[a,

b]且ti
0,ti

1,ti
2,…ti

n∈[a,b]为x^i 已经求解的时间

步,那么对x^i 进行三次Hermite插值可以得到:

x^i(t)=∑
n

j=0
x^i(ti

j)Hn,j(t)+∑
n

j=0
x^'i(ti

j)H
^

n,j(t),

Hn,j(t)=[1-2(t-ti
j)L'n,j(ti

j)]L2
n,j(t),

H
^

n,j(t)=(t-ti
j)L2

n,j(t), (8)

其中,Ln,j(t)函数为第j个n次拉格朗日多项式基

函数,(·)'表示时间导数.此插值能够较准确给出

任意时刻时滞微分方程的解,因为其兼顾了给定点

的数据及其导数大小,匹配了时滞微分方程对其解

x^ 和x^'的约束.
  

如图1所示,该类在计算时接受求解器返回的

数据,并用一个V.update()函数将其保存,在接受

时间并给出历史数据时,先以t为中心,在其左右

共取n 个点作为插值采样点,返回插值结果x^i(t).
在计算时,为了保证计算速度,数据记录步长Δt取

0.01
 

s,而n 则取为50.这样动态保留导数信息的

插值无需在每个时间步积分时遍历所有已经求解

并保存的数据,并且在精度上不弱于全局插值算

法.如此能够减少每次前向积分时回溯历史值所需

要的插值时间,因为每次仅需对固定大小的数据长

度进行插值即可.

图1 时滞微分方程解类的构建

Fig.1 Construction
 

of
 

class
 

for
 

time-delay
 

differential
 

equations
 

图2给出的是含时变参数的时滞微分方程求

解器架构.该求解器使用了一个完整的可变参数常

微分方程积分器(VODE),并对其进行了二次封

装.为了将时滞微分方程转化为常微分方程,时滞

项被视作为一个动态变量,其随着求解时间t的变

化返回x^(t-τ)的值.当求解伴随时滞微分方程

时,其中的一些时变参数矩阵如∂fT(t)/∂x^ 则被封

装成函数的形式,等待调用.
两个类V的对象x^ 和x^'被初始化并赋予初始

条件.x^'的导数信息被送入x^ 完成 Hermite插值.
待求解的方程被写入求解器中并使用动态步长进

行求解,按Δt记录求解的数据并回送x^ 和x^',x^ 记

录系统状态变量的解,x^'记录解的导数信息.求解

器在积分时回溯x^ 在t-τ 时的值,回溯时完成三

次Hermite插值操作并继续送入求解器进行求解.
求解伴随时滞微分方程时,进行的计算步骤与上述
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图2 时滞微分方程求解器流程

Fig.2 Time
 

delay
 

differential
 

equations
 

solver
 

flow

相同,只需将时间步长取为-Δt,此时x^ 和x^'以及

求解器均会反向进行计算.

2.2 并行梯度解算
  

对时滞微分方程和伴随时滞微分方程的求解

结束后,紧接着需要对数据进行组合并按照公式

(6)和(7)来计算系统参数和时滞的梯度.设公式

(6)中的T=tj,并让tj 遍历区间[0,T].为了计算

∂x^i(tj)/∂p 和∂x^i(tj)/∂τ,需要预先计算wi(t),

t∈ [0,tj],而不同的tj 代表伴随方程的终值时刻

需要反复调整.因此,上述过程需要进行2×N×n
次数值积分,这显著地增加了计算的代价.事实上,

对于相同维度的伴随方程,在tj ∈ [0,T]时,其终

值条件均相同:wi(tj)=[0,…,0,1i-th,0,…,0]T.
相同的终值条件使得不同tj 计算得到的解实则是

wi(T)的一部分,对于tj ∈ [0,T],可以 得 到

wi(t)=wi(T-tj+t)的等式关系.利用此关系进

行计算实际上减少了 N -1次独立对伴随微分方

程的数值积分.最终,梯度表达式在对公式(6)的调

整下被简化为:

∂x^i(tj)
∂p =∫

tj

0
wT

i(T-tj +t)∂f∂p
dt,

∂x^i(tj)
∂τ =-∫

T-τ

-τ
wT

i(T-tj +t+τ)×

 ∂f
(t+τ)
∂x^

dx^(t)
dt dt (9)

  

然而,对于公式(9),仍需要对其进行积分操

作.在数值计算中wi 作为一个时滞微分方程解类

的一个实例,其可以被视为一个函数,可以在给定

的时间区间内返回一个连续的函数值.如果利用多

项式插值进行数值积分,时间计算成本较大,因为

其需要对wi 内记录的离散数组反复回溯.因此,算
法采用了并行的离散数值积分.

每个维度所对应的wi 被i个进程并行求解,求
解得到的数据wi 将被送入公式(9)等待积分计算.
按时间间隔Δt离散[0,tj]时间区间,并从wi 中取

得待积分数据.需要注意的是,按照待Δt离散[0,

tj]时间区间对应的wi(t)刚好是存储在实例中的

离散数组,免去了调用时的插值过程.积分数据则

被存储为一个三维矩阵,其中一维对应状态向量的

维度,一维对应数据自身长度,一维对应积分的时

间上限.这样存储的目的是将每一离散时刻需要积

分的数据按时间和维度排列,以内存占用换取较短

的计算时间,避免在积分时串行循环调用数值积分

方法.最终,数据被送入n×N 个并行进程中同时

进行离散Simpson积分,最终得到系统状态分别

对系统 参 数 及 对 时 滞 的 偏 导 数 并 代 入 求 解 公

式(7).

2.3 基于梯度的优化
  

当梯度求解完毕后,算法使用最常见的自适应

矩估计算法(adaptive
 

moment
 

estimation,
 

Adam)

梯度优化器来对系统参数和时滞进行优化[21].
Adam算法通过计算一阶和二阶矩以获得动态梯

度序列,从而实现快速稳定的优化过程.该方法首

先计算梯度的一阶矩估计mt,考虑过去的梯度,得
到梯度的移动平均值.随后计算梯度的二阶矩估计

vt,考虑过去梯度的平方,得到平方梯度的移动平

均值.利用上述的一阶矩和二阶矩进行偏差修正.
其参数更新策略如下:

gt=
∂J
∂pi

mt=β1mt-1+(1-β1)gt

vt=β2vt-1+(1-β2)g2
t

m^t=
mt

1-βt
1

v^t=
vt

1-βt
2

θt+1=θt- η
v^t +􀆠

m^t (10)

其中gt 表示参数和时滞的梯度,η 表示优化的学

习率,t表示某个离散的特定时刻.为了增强优化

器的收敛速度和泛化能力,需要对优化器中的参数

根据不同辨识任务进行人为指定.在本文动力学系

统辨识仿真算例中,公式(10)中的三个参数分别指

定为β1=0.75,β2=0.999,ε=10-8.
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3 数值计算案例
  

考虑一个二自由度质量-弹簧振子系统[9],如
图3所示,两个质量块m1 和m2 由一个三次非线

性弹簧和线性阻尼c1 连接,其中三次非线性弹簧

的线性刚度系数为k1,非线性刚度系数为μ1、m2.
通过线性弹簧k2 和线性阻尼c2 与地面连接.在质

量块m1 和m2 上分别有一个时滞微分控制器g1

和g2 控制弹簧振子系统的振动,用p1、p2、p3、p4

表示控制器增益,控制器g1 和g2 的表达式为:

g1=p1x
·
1(t-τ)+p2x

·
2(t-τ)

g2=p3x
·
1(t-τ)+p4x

·
2(t-τ) (11)

取系统参数为 m1=0.25
 

kg,m2=0.37
 

kg,k1=

1.2π2
 

N/m,k2=0.8π2
 

N/m,μ1=2
 

N/m3,c1=
0.02π

 

N·s/m,c2=0.08π
 

N·s/m.系统状态方

程如下所示:

 ddt

x1

x2

x·1

x·2

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

=

x·1

x·2
A1

A2

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

+

0
0

p1x
·
1(t-τ)+p2x

·
2(t-τ)

p3x
·
1(t-τ)+p4x

·
2(t-τ)

􀭠

􀭡
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

 A1=7.3741(-x1+x2)+8(-x1+x2)2+

0.251327(-x·1+x·2)

 A2=32.0095(x1-x2)+5.4054(x1-x2)3-

21.3397x2+0.17(x
·
1-x·2)-0.679x

·
2 (12)

图3 质量-弹簧振子系统示意图

Fig.3 Schematic
 

diagram
 

of
 

a
 

mass-spring
 

oscillator
  

利用上文描述的辨识算法对该系统展开参数

和时滞辨识.在辨识前,假设方程(12)的初始条件

为定常值,在t≤0时,x1 和x2 的值均为0.1
 

m,而

x·1 和x·2 的值均为0
 

m/s,且均不随着时间变化而

改变.辨识该系统的主要目的是从响应中得到系统

时滞以及反馈参数的数值.设系统时滞的真值τ为

0.5
 

s,而方程中表示控制器的四个参数被设为:

p1=0.14,p2=0.09,p3=0.07,p4=-0.11,单位

均为1/s.优化的初始时滞τ为0.75
 

s,反馈参数的

初始条件与真实值存在较大偏差,如下所示:p1=
0.20,p2=0.15,p3=0.15,p4=-0.05,单位均为

1/s.利用上述初始条件和上文的参数辨识算法迭

代200次来寻找系统的真实参数.从图4可以看

出,该识别算法能够给出很好的识别效果,识别系

统的响应和真实系统响应的均方误差仅为2.43×
10-5.图中虚线代表参数的真实大小,实线表示的

是随着迭代进行,参数辨识的结果.通过观察辨识

迭代过程,可以发现算法能够准确识别时滞和系统

参数的大小.此外,该实例还表明算法能够处理非

线性问题.考虑到公式(12)中同时存在二阶以及三

阶的非线性项,识别过程中参数和时滞的数值尽管

有所波动,但结果仍非常理想.该数值仿真实验验

证了其对含非线性以及时滞反馈的系统的识别

能力.

图4 质量-弹簧振子系统识别结果

Fig.4 Identification
 

results
 

of
 

the
 

mass-spring
 

oscillator
  

此外,在上述实验的基础上,考虑了噪声对该

计算框架辨识效果的影响.在上述数值仿真得到的

响应中,加入信噪比(SNR)分别为20
 

dB、30
 

dB、

40
 

dB的白噪声.表1中给出了在四种不同信噪比

下的识别结果.在无噪声的情况下辨识结果与参考

值几乎一致,随着噪声信号的增加,除了时滞以外

的参数均有偏离参考值的趋势,但误差仍然可控.
时滞参数随噪声强度的波动变化不大.随着噪声强
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度增大,识别准确度降低,这是由于本文算法是严

格的时域辨识算法,对时域信号较为敏感,时域的

信号噪声会一定程度影响梯度计算中所需数值积

分的准确度.

表1 不同信噪比下的识别结果

Table
 

1 Identification
 

results
 

with
 

different
 

signal-to-noise
 

ratios

SNR p1/(1/s) p2/(1/s) p3/(1/s) p4/(1/s) τ/s

No
 

noise 0.140 0.090 0.070 -0.109 0.500

40 0.140 0.089 0.069 -0.109 0.500

30 0.139 0.098 0.059 -0.099 0.500

20 0.178 0.127 0.047 -0.157 0.489

4 结论
  

本文基于伴随方程与梯度下降算法对时滞微

分方程展开了参数辨识.通过几个关键的计算步骤

展示了该算法的数学逻辑.此外还详细介绍了一个

基于Python平台的辨识框架.其中,详细说明了数

据存储方法、求解器搭建方法和计算流程,并利用

简化手段降低了参数识别的计算复杂度.该算法平

台计算逻辑简单,调用额外接口少,便于使用,可以

对任意时滞微分方程的未知参数展开相应的辨识

工作.为了验证算法的准确程度,本文辨识了一个

二自由度振子系统的参数和其控制器的时滞,验证

了算法的准确性,并分析了含有噪声情况下该算法

的准确度.该算法给予了研究者对含时滞未知系统

进行初步辨识的能力,具有实际应用潜力,未来将

在实际工程力学模型中进一步验证其有效性.
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