95 23 5 5 o L5 HE E R Vol. 23 No. 5
2025 4F 5 H JOURNAL OF DYNAMICS AND CONTROL May 2025

LB Y5 :1672-6553-2025-23(5)-036-008 DO1:10.6052/1672-6553-2024-100

ETHEARENRHERESHHIERRENA"

BEX KW

R R ZE MR R LS MR G54 g 2 B Pt e R EE A SE 00, Mt 210016)

WE B TR N TR RS GRS 5l ZOREZ B s & RS E Y 1 TR E Y
P2 A 2 AU U HGE T A B A B 2 R G R PR T A R 6 B T R G sh A AT O R AL
SRR E VE  MERR TR0 B S BB 3 01 R G T I RO PRz —. D 4R i M EURE BE R AR AR SR
T 3 T B R R T AR B v A IR A R 20 O R S O R B I B R e T R Y A AT R L
T 306 1) SR A R 0 T O R 9 I 1 X S B0 R B DT S B R R S O . AR U T SRR B R Ot
3T Python F & FF & X R v SAESL {8 T 8 2l 50T, ol A4 1 00 A 28 0 B 88 T — > SRR SR AR I AR S 800 it
TR 23 T R SR AR . R 87 Ak 580 0 R0 AT 0RO AR SR A R O AR T 5 5 A B L 48 5 S B g b T R4
PE A T IR B A S AU — A2 A EARR R T R G B #E AT T A O S A R R
W, 32 07 % AR A% A TR R 6 1Y B S 40

KBRS TR, SEBPHR, EROTR, i

hE S % S:0313 XHkARERD A

Adjoint Equation Based Framework and Application for Delayed
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Abstract Delay differential equations are widely used to describe dynamic connections between system’s
current states and its past states. They are particularly suited for modelling complex systems with de-
lays, such as dynamic systems arisen from biology. engineering and physics. Since delay effects can sig-
nificantly impact system dynamic behaviour, control performance and stability, accurate identification of
delay parameters has become a core challenge. To improve both accuracy and efficiency, this study pro-
poses a delay parameter identification algorithm based on adjoint equations and the gradient descent
method. By leveraging the analytical properties of adjoint equations, this method solves the adjoint sys-
tem backward in time, allowing for the precise calculation of the gradient of the system response with re-
spect to the parameters, thus facilitating efficient parameter updates. This study details the mathemati-
cal derivation of the algorithm and develops a computational framework on the Python platform, incor-
porating automatic updates, dynamic interpolation, and a solver for delay differential equations with

time-varying parameters. By simplifying the algorithm and utilizing parallel computing, the solution
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process is optimized to reduce computational complexity, enhancing its practical applicability. To vali-

date the effectiveness of the algorithm, a numerical identification experiment is conducted for a two-de-

gree-of-freedom nonlinear spring-mass system. The results demonstrate that the method accurately iden-

tifies the system delay parameters while maintaining a low error margin.
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Identification results with different
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