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摘要 本文提出一种基于骨架线和包络线的单自由度非线性系统参数辨识方法.该方法将系统骨架线和包

络线作为观测数据,结合其解析表达式,利用贝叶斯估计得到物理参数的后验联合分布.随后,采用马尔可

夫蒙特卡罗抽样得到各物理参数的边缘概率分布.这避免了复杂的时域数值积分,从而提高了计算效率.此

外,考虑噪声的影响,比较了希尔伯特变换和过零法在估计骨架线和包络线时的精度.为验证所提方法的有

效性与精度,将其应用于识别Duffing振子,并讨论了不同强度噪声的影响.结果表明,所提方法能够在噪声

环境下识别单自由度非线性系统参数且具有较高精度.
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Abstract This
 

paper
 

proposes
 

a
 

parameter
 

identification
 

method
 

for
 

single-degree-of-freedom
 

nonlinear
 

systems
 

based
 

on
 

backbone
 

and
 

envelope
 

curves.
 

The
 

method
 

uses
 

the
 

system􀆶s
 

backbone
 

and
 

envelope
 

curves
 

as
 

observational
 

data,
 

combining
 

them
 

with
 

their
 

analytical
 

expressions
 

to
 

obtain
 

the
 

posterior
 

joint
 

distribution
 

of
 

physical
 

parameters
 

through
 

Bayesian
 

estimation.
 

Subsequently,
 

the
 

Markov
 

Chain
 

Monte
 

Carlo
 

method
 

is
 

employed
 

to
 

derive
 

the
 

marginal
 

probability
 

distributions
 

of
 

each
 

physical
 

parameter.
 

The
 

proposed
 

approach
 

avoids
 

the
 

need
 

for
 

complex
 

time-domain
 

numerical
 

integration,
 

sig-
nificantly

 

improving
 

computational
 

efficiency.
 

Furthermore,
 

the
 

effect
 

of
 

noise
 

is
 

considered,
 

and
 

the
 

re-
sults

 

of
 

the
 

Hilbert
 

transform
 

and
 

the
 

zero-crossing
 

method
 

for
 

estimating
 

the
 

backbone
 

and
 

envelope
 

curves
 

are
 

compared.
 

To
 

validate
 

the
 

accuracy
 

of
 

the
 

proposed
 

method,
 

it
 

is
 

applied
 

to
 

identify
 

the
 

Duff-
ing

 

oscillator
 

with
 

a
 

discussion
 

of
 

the
 

impact
 

of
 

noise
 

at
 

different
 

levels.
 

The
 

results
 

demonstrate
 

that
 

the
 

proposed
 

method
 

is
 

accurate
 

in
 

identifying
 

the
 

physical
 

parameters
 

of
 

single-degree-of-freedom
 

nonlinear
 

systems
 

under
 

noisy
 

environments.
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引言
  

在工程结构和物理系统中,物理参数识别[1-4]

指从实验或观测数据中提取未知的物理参数,如材

料的弹性模量和密度.这些参数对结构设计、健康

监测和故障诊断至关重要.然而,在实际应用中,由
于材料不均匀性和测量噪声,结构物理参数识别问

题变为不确定性问题[5-7].因此,必须在确定性物理

参数识别的基础上,进一步发展能合理反映不确定

性特性的概率方法.
  

贝叶斯估计方法在物理参数识别中得到了广

泛应用.它不仅提供了参数的最优估计,还揭示了

参数的概率分布,从而有效地解释了物理参数识别

中的不确定性问题.Beck[8]首先提出将贝叶斯估计

理论引入系统参数识别的研究,并构建了基于贝叶

斯估计的参数识别框架.在此框架下,Vanik[7]开发

了一种基于概率的健康监测方法.Beck和Katafy-

giotis[9]提出了一种识别物理参数的贝叶斯估计渐

近逼近方法,近似地估计了物理参数后验联合分

布,得到了物理参数估计值.
  

在非线性系统中,基于位移响应的贝叶斯估计

通常需要随时间进行数值积分.这一过程需对微分

方程进行反复迭代计算,导致计算成本显著增加.
为缓解计算成本,常用方法包括采用适合并行化的

代理模型与算法[10,11],或利用精心筛选的实验数

据子集[12,13]以减少数据处理量.尽管如此,对于包

含大量未知参数的大型非线性系统,基于贝叶斯理

论的参数辨识方法仍然需要较大的计算成本.
  

本文提出了一种无需依赖模型代理或减少实

验数据的新方法,可实现高效贝叶斯系统识别.该
方法基于实验测得的骨架线和包络线及其解析表

达式,推断参数估计值.这些解析表达式的形式简

单,避免了复杂的时域数值积分.相比于以位移响

应数据为观测数据的方法,该方法显著降低了计算

成本.

1 单自由度非线性系统骨架线和包络线的

估计

  

对于自由振动的单自由度非线性系统,其运动

方程可以表示为

mx··+cx·+f(x)=0 (1)
其中m 和c分别表示系统质量和阻尼;f(x)是系

统的非线性恢复力.
  

在获得系统的时程响应后,可通过希尔伯特变

换[14,15]或过零检测法[16,17]提取包络线与骨架线.
本文将提取的骨架线和包络线作为观测数据.

  

希尔伯特变换是一种重要的信号处理工具,可
以将实信号变换为解析信号,用于提取信号的瞬时

特性(如瞬时振幅和瞬时频率).自由衰减响应x(t)
的复解析时间信号表示如下

w(t)=x(t)+jx~(t) (2)

其中j= -1;x~(t)表示自由振动信号的希尔伯

特变换.包络线可由式(2)计算

A(t)= x2(t)+x~2(t) (3)
瞬时相位

ϕ(t)=arctanx~(t)/x(t)  (4)
骨架线由下式计算

ωd(t)=ϕ
·(t) (5)

  

过零法是一种简单高效的信号分析方法,常用

于测量信号的频率、周期和特征点.通过检测信号在

时间域穿越零点的时刻,可有效提取周期性信号的

信息.具体步骤为取含高斯白噪声的位移信号x(t),
检测零点并用tk 表示其时刻.为消除噪声引入的

虚假零点,可引入以下准则进行处理[18]

t0k+1-t0k >
T
4

(6)
  

随后,采用峰值拾取程序计算相邻过零点之间

的最大幅度并记录其时间,以给出包络线的估计.
提取tk 时刻信号频率

f(t0m(k))=
1

(t0m,k+1-t0m,k-1)
(7)

将估计的包络与瞬时频率相结合,得到骨架线.
  

在非线性振动分析中,骨架线和包络线的近似

解析解通常使用谐波平衡法、多尺度法等方法进行

推导[19].在得到骨架线和包络线的近似解析解后

将其作为模型结构进行参数估计.

2 基于贝叶斯估计的参数辨识
  

本文采用贝叶斯估计对非线性系统参数进行
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辨识,贝叶斯公式为

p(θ|z,M)=p(z|θ,M)p(θ|M)
p(z|M)

(8)

其中,θ 为待估计参数向量,本例中θ1=[c],θ2=
[k1,k3];z为观测数据向量,在本例中z={z1,z2,
…,zn,…,zN}由N 个观测点数据组成,本例中表

示估计的包络线或骨架线;M 表示模型结构,本例

为包络模型或骨架模型.
  

p(θ|z,M)是参数θ 的后验概率分布,表示在

观察到测量数据z后,参数θ发生的概率;p(z|θ,

M)为参数θ的似然函数,表示在给定的参数θ 条

件下观测到数据z的概率;p(θ|M)为参数θ 的先

验概率分布,表示进行数据测量之前所知道的关于

参数θ的先验信息,通常由工程经验确定,本例中

采用均匀分布作为无信息先验的合理选择;p(z|
M)为正则化常数,表示为:

p(z|M)=∫p(z|θ,M)p(θ|M)dθ (9)

假设预测误差服从期望为0、方差为σ2 的正态分

布,则似然函数为

p(z|θ,M)=
1

(2πσ2)N/2
exp-

1
2σ2∑

N

n=1

[zn -yn(θ)]2  
(10)

其中y={y1,y2,…,yn,…,yN}T 为正向分析响应

向量,本例中表示解析包络线或骨架线表达式;σ2

为未知方差.当先验分布假设为均匀分布,似然函

数采用式(10)时,贝叶斯理论的主要挑战在于正则

化常数p(z|M)的积分复杂性.这需借助马尔可夫

链蒙特卡罗方法进行抽样近似.此外,参数向量θ
中包含多个未知参数,且每个参数的边际分布涉及

高维积分.为解决这一问题,本文采用了 Metropo-
lis-Hastings算法.

  

假设初始参数为θ(0)
1 ={c

(0)},θ(0)
1 ={k

(0)
1 ,

k(0)
2 },候选参数向量θ(*)

1 和θ(*)
2 可以从均匀分布

中生成.比如,k(*)
3 可由k(*)

3 =k(i-1)
3 +Tk3U(-1,

1)产生,其中k(i-1)
3 是当前值;Tk3

是k3 的调整参

数;U(-1,1)是[-1,1]的均匀分布.根据马尔可

夫链平稳分布的详细平衡条件,对于候选项k(*)
3

的接受或拒绝条件为

r=min
π(k(*)

3 )g(k(i-1)
3 |k(*)

3 )
π(k(i-1)

3 )g(k(*)
3 |k(i-1)

3 )
,1  (11)

其中π(k3)∝p(k3)p(z|k3,σ2)是k3 的后验分布;

g(k(*)
3 |k

(i-1)
3 )=1/2Tk3

表示区间长度为2Tk3
的

均匀分布,用作过渡分布.由于过渡分布g(k(*)
3 |

k(i-1)
3 )和先验分布p(k3)均为均匀分布,因此有

g(k(i-1)
3 |k(*)

3 )=g(k(*)
3 |k(i-1)

3 )和 p(k(*)
3 )=

p(k(i-1)
3 ).式(11)可以简化为

r=min{p(z|k(*)
3 ,σ2)/p(z|k(i-1)

3 ,σ2),1}

(12)

如果r大于从[0,1]区间采样的均匀随机数,则接

受候选值;否则,拒绝候选值.在公式(12)的计算过

程中,方差σ2 可以直接从逆伽马分布中提取,其形

式为[20]

Inv-Gamma{N/2+α,β+

 ∑
N

n=1
[zn -yn(θ2)]

2/2} (13)

其中α和β为逆伽马分布中的超参数[21].

3 数值算例
  

以自由振动Duffing振子为例,系统的动力学

方程为

mx··+cx·+k1x+k3x3=0 (14)

其中质量m=1.5
 

kg;阻尼c=0.8
 

Ns/m;线性刚度

k1=6000
 

N/m;三次非线性刚度k3=7×106
 

N/m3.
采用四阶龙格-库塔法求解系统的位移响应,

假设初始位移为18
 

mm.在响应中加入噪声强度

10%的高斯白噪声,以模拟测量过程中的噪声干

扰.系统位移响应如图1所示.其中灰色线代表加

入噪声的位移响应,红色线代表无噪声位移响应.
可以看出Duffing振子的振动近乎指数衰减,噪声

在响应的末尾影响更大.

图1 加入10%高斯白噪声与无噪声的位移响应

Fig.1 Displacement
 

response
 

with
 

10%
 

Gaussian
 

white
 

noise
 

and
 

without
 

noise

由希尔伯特变换和过零法提取的含噪声位移

响应的包络线如图2所示.其中,红色线为无噪声

状态下的理想包络线,灰色线为由希尔伯特变换估
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计的包络线,蓝色圆圈为由过零法估计的包络线.
可见,高斯白噪声存在时,过零法估计的包络线被

高估,而希尔伯特变换对包络的估计均匀分布在无

噪声包络线周围,希尔伯特变换对包络线的估计较

为准确.

图2 自由衰减信号的包络估计

Fig.2 Envelope
 

estimation
 

of
 

freely
 

attenuated
 

signals
  

由希尔伯特变换和过零法提取的含噪声位移

响应的骨架线如图3所示.其中,绿色圆圈为无噪

声状态下的骨架线,蓝色点为希尔伯特变换估计的

骨架线,红色圆圈为过零法估计的骨架线.结果表

明,过零法对骨架线的估计较为准确.
  

综上所述,希尔伯特变换对包络线的前半段估

计较好,过零法对骨架曲的估计较为准确.因此,采
用希尔伯特变换法估计包络线,过零法估计骨架

线,作为参数估计的观测数据.

图3 自由衰减信号的骨架估计
Fig.3 Backbone

 

estimation
 

of
 

freely
 

attenuated
 

signals
  

自由振动Duffing振子的包络线的近似解析

解为

A=A0e
-ζωnt (15)

其中ωn= k1/m 为 无 阻 尼 固 有 频 率;ζ=c/2

mk1为基础线性系统的阻尼比;A0 为衰减开始时

振动的位移幅度.将包络线两边取对数得

ln(A)=ln(A0)-ct/2m (16)

骨架线表达式如下

ω2
d(t)=ω2

dd(t)+
3
4

k3
mA2(t) (17)

其中ωdd=ωn 1-ζ2 ≈ωn,是基础线性系统的阻尼

固有频率;ωn 是基础线性系统的无阻尼固有频率.
  

分别模拟5%、10%和15%噪声强度的位移响

应,并提取包络线和骨架线作为观测数据.以包络

解析解log(A)≈log(A0)-ct/2m 和骨架解析解

ω2
d(t)=ω2

dd+(3k3/4m)·A2(t)为模型结构.设置

参数的先验范围为
 

c
 

∈[0,2]
 

Ns/m,
 

k
 

1∈[0,

10000]
 

N/m,
 

k3∈[0,
 

108]
  

N/m3.不同噪声强度

下的各参数后验概率均值和95%置信区间如表1
所示.可以发现,不同噪声强度下各参数后验概率

的均值均接近真实值.图4给出了基于包络线估计

的参数c的后验概率密度图.基于骨架线估计的参

数k1 和k3 的后验概率密度图分别如图5、图6所

图4 不同噪声强度下估计的阻尼c后验概率密度

Fig.4 Posterior
 

probability
 

density
 

of
 

damping
 

c
 

estimated
 

at
 

different
 

noise
 

intensities

图5 不同噪声强度下估计的k1 的后验概率密度

Fig.5 Posterior
 

probability
 

density
 

of
 

damping
 

k1 estimated
 

at
 

different
 

noise
 

intensities
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表1 结构物理参数识别结果

Table
 

1 Identification
 

results
 

of
 

the
 

physical
 

parameters
 

of
 

the
 

structure

物理参数 真实值
5%噪声 10%噪声 15%噪声

均值 95%置信区间 均值 95%置信区间 均值 95%置信区间

c/(Ns/m) 0.80 0.79 [0.69,0.89] 0.80 [0.60,1.00] 0.76 [0.49,1.09]

k1/(N/m) 6000 6018 [5901,6095] 5991 [5868,6135] 6025 [5796,6193]

k3×10
-6

 

/(Ns/m3) 7 7 [6.99,7.01] 7 [6.96,7.04] 7 [6.94,7.06]

图6 不同噪声强度下估计的k3 的后验概率密度

Fig.6 Posterior
 

probability
 

density
 

of
 

damping
 

k3 estimated
 

at
 

different
 

noise
 

intensities

示.其中黑色虚线为参数真实值.从图中可以发现,

估计的参数均值均接近真实值.随着噪声强度的增

加,由所提方法得到的参数置信区间范围逐渐增

大.
  

结果表明,所提方法能够准确、快速地识别单

自由度系统参数均值并确定置信区间.

4 结论
  

本文将系统的骨架线和包络线作为观测数据,

结合其解析表达式,通过贝叶斯估计得到物理参数

的后验联合分布.随后,采用马尔可夫蒙特卡罗抽

样法获取各物理参数的边缘概率分布.由于使用包

络线和骨架线为模型,避免了复杂的时域数值积

分,提升了计算效率.为验证所提方法的有效性和

精度,本文将其应用于Duffing振子的参数识别,

并探讨了不同噪声强度下的影响.结果表明,估计

的参数均值均接近真实值.随着噪声强度的增加,

由所提方法得到的参数置信区间范围逐渐增大.
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