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Parameter Identification of Single-Degree-of-Freedom Nonlinear Systems

Based on Backbone Curves and Bayesian Estimation "
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Abstract This paper proposes a parameter identification method for single-degree-of-freedom nonlinear
systems based on backbone and envelope curves. The method uses the system’s backbone and envelope
curves as observational data, combining them with their analytical expressions to obtain the posterior
joint distribution of physical parameters through Bayesian estimation. Subsequently, the Markov Chain
Monte Carlo method is employed to derive the marginal probability distributions of each physical
parameter. The proposed approach avoids the need for complex time-domain numerical integration, sig-
nificantly improving computational efficiency. Furthermore, the effect of noise is considered, and the re-
sults of the Hilbert transform and the zero-crossing method for estimating the backbone and envelope
curves are compared. To validate the accuracy of the proposed method, it is applied to identify the Duff-
ing oscillator with a discussion of the impact of noise at different levels. The results demonstrate that the
proposed method is accurate in identifying the physical parameters of single-degree-of-freedom nonlinear

systems under noisy environments.
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