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Research on Trajectory-Tracking Control of the Virtual Rail Train with

Considering Hinge Forces Between the Vehicles”

Li Daoyang Yang Caijin® Lu Ye Zhou Wenqing Zhang Weihua
(State Key Laboratory of Rail Transit Vehicle System. Southwest Jiao Tong University, Chengdu 610031, China)

Abstract Aiming at a new type of urban road transportation system, namely the virtual rail train, as an
example of a double articulated vehicle system with three bodies and six axles, a trajectory-tracking con-
trol method is proposed considering the hinge forces between the vehicles, the operation deviation and
the lateral stability of the vehicle system. to improve the dynamics performance of the long vehicle sys-
tem. Firstly, the steering angles of all axles are determined to achieve the coordinated steering and traj-
ectory-tracking of the vehicle, where the axles A;, A,, and A, steer according to the model predictive
control (MPC) theory, the axle A, steers with the single point preview principle, and the axles A, and
A steer based on the extended Ackermann steering principle. Secondly, the driving torques of all wheels
are determined based on the closed-loop compensation PID of the longitudinal hinge forces between the
vehicles, to make the vehicle run at the desired longitudinal speed, considering the constraints of the ve-
hicle motions, the vehicle speed condition and the optimization of hinge forces between the vehicles. Fi-
nally, based on the co-simulation of TruckSim and Simulink, the dynamic characteristics of the vehicle
are studied with two conditions of double lane changing and compound curve. The results show that the

present method not only achieves better tracking accuracy and lateral stability of the vehicle system, but
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also obviously reduces the hinge forces between the vehicles, which effectively improves the dynamics

performance of the long vehicle system.

Key words virtual rail train,

predictive control,
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Fig. 1 Schematic diagram of virtual rail train and tracking control logic
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Fig. 2 Single- trde model of the virtual rail train
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Table 1 Virtual rail train parameters

Parameter Unit Value

The first unit mass m, kg 9140
The second unit mass m, kg 7140
The third unit mass m, kg 7140
Half wheelbase / m 2.7

Distance between the hinge point and 5
m
the center of mass ¢
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