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Resonance Response Analysis of the Stochastic Auto-Parametric Dynamic

Vibration Absorption Pendulum System Modulated by Memory Signals "
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Abstract The mechanism of the time-delayed feedback and the auto-feedback signals of the coupled ac-
celeration state on the resonance behavior of an auto-parametric dynamic vibration absorption pendulum
structure under random loads is investigated. The third-order scale perturbation method is introduced to
analyze the resonance responses in deterministic and random cases of the stochastic coupling auto-para-
metric dynamic vibration absorption pendulum system, as well as the critical criteria for determining the
stability of vibration modes. Synchronously applying numerical simulation techniques to evaluate and
simulate the resonance laws of the main and subsidiary vibration modes modulated by memory signals
from multiple levels, including the deterministic amplitude-load response, the influence of the random
load factor on the spatiotemporal trajectory of the system states, and the system random moment re-

sponse. Further explore the characteristics of the deterministic moment solution varying with the load
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intensity, and clarify the evolution law of the system phase trajectory caused by bounded random loads
formed by phase modulation based on the noise intensity factor. Besides, the random moments of system
states maintain the phenomenon of main and subsidiary vibration modes through the modulation of main
and internal resonances. Memory feedback signals cause the system vibration moments to exhibit perio-

dicity and stability alternation, and system oscillation modes are sensitive to changes in the coupled

memory feedback gain and this pattern leads to the system’s energy to be renewed.
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Table 1 Parameter representations of system equations

Notation Physical significance

M The mass of the main vibrating object
m The pendulum mass
0 The pendulum angle
d The pendulum length

H @ Bounded noise excitation
a Moment of inertia
z Self-feedback signal gain

) Damping coefficient
f Stiffness coefficient
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