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摘要 双边控制系统常处于恶劣的工作环境中,设备磨损、老化等因素不可避免,当系统物理参数发生变化

时,原先所设计的控制器将不能有效地对系统进行控制.本文以二连杆双边控制系统为对象开展数据驱动

动力学建模和自适应控制研究.首先利用系统输入输出数据和拉格朗日神经网络(LNN)分别建立主、从端

系统数据驱动动力学模型,然后考虑数据驱动模型与系统真实结构之间不可避免的误差,基于数据驱动动

力学模型设计了四通道自适应控制器,并利用Lyapunov稳定性理论证明了该闭环控制系统的稳定性.最后

考虑主端受到不同操纵力和从端受到不同环境力的情况进行仿真研究,仿真结果表明所提出的控制器具有

稳定性和透明性,能够保证从端系统稳定地跟踪主端系统的运动,并能够在主端反映从端机械臂与外界环

境间的作用力.
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Abstract Bilateral
 

control
 

systems
 

often
 

operate
 

in
 

harsh
 

working
 

environments,
 

where
 

equipment
 

wear
 

and
 

aging
 

factors
 

are
 

unavoidable.
 

When
 

the
 

physical
 

parameters
 

of
 

the
 

system
 

change,
 

the
 

originally
 

de-
signed

 

controller
 

may
 

no
 

longer
 

effectively
 

control
 

the
 

system.
 

This
 

paper
 

focuses
 

on
 

the
 

two-link
 

bilat-
eral

 

control
 

system
 

to
 

conduct
 

research
 

on
 

data-driven
 

dynamic
 

modeling
 

and
 

adaptive
 

control.
 

First,
 

the
 

input-output
 

data
 

of
 

the
 

system
 

is
 

used
 

to
 

establish
 

the
 

data-driven
 

dynamic
 

models
 

for
 

both
 

the
 

master
 

and
 

slave
 

systems
 

using
  

Lagrangian
 

neural
 

networks
 

(LNN).
 

Then,
 

considering
 

the
 

inevitable
 

errors
 

be-
tween

 

the
 

data-driven
 

model
 

and
 

the
 

actual
 

system
 

structure,
 

a
 

four-channel
 

robust
 

adaptive
 

controller
 

is
 

designed
 

based
 

on
 

the
 

data-driven
 

dynamic
 

model,
 

and
 

the
 

stability
 

of
 

the
 

closed-loop
 

control
 

system
 

is
 

proven
 

using
 

Lyapunov
 

stability
 

theory.
 

Finally,
 

simulations
 

are
 

conducted
 

to
 

investigate
 

scenarios
 

where
 

the
 

master
 

side
 

is
 

subjected
 

to
 

different
 

manipulation
 

forces
 

and
 

the
 

slave
 

side
 

experiences
 

various
 

environmental
 

forces.
 

The
 

simulation
 

results
 

indicate
 

the
 

stability
 

and
 

transparency
 

of
 

the
 

proposed
 

con-
troller,

 

ensuring
 

that
 

the
 

slave
 

system
 

can
 

stably
 

track
 

the
 

motion
 

of
 

the
 

master
 

system
 

and
 

effectively
 

reflect
 

the
 

interaction
 

forces
 

between
 

the
 

slave
 

manipulator
 

and
 

the
 

external
 

environment.
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引言
    

随着机器人技术以及计算机技术的快速深入

发展,机械臂应用场景已由最初的工业领域拓展到

了包括医疗领域、救援救灾、空间探索、航空航天等

各种领域[1-5].然而,对于工作环境复杂的任务,机
械臂难以自主地进行高精度低时延的控制.为了提

高机械臂对复杂环境的适应性,人类操作者必须介

入到机械臂执行的任务中,将人类的认知技能与机

械臂相结合,完成复杂的任务.双边遥操作系统作

为机械臂执行任务的重要手段,其控制设计有两个

主要指标:稳定性和透明性[6],即要求从端机械臂

能够精确跟踪主端机械臂的轨迹,并且操作人员能

精确感知到从端机械臂与环境的接触力.
由于机械臂通常具有强非线性和不确定性因

素,且遥操作机械臂经常处于恶劣工作环境,设备

的磨损、老化以及工作条件的变化,会使系统参数

发生缓慢的变化,此时传统建模方法需要重新测量

系统参数,但大多数情况下测量是不便的,因此可

以考虑采用数据驱动建模方法建立系统动力学模

型并进行控制设计.近年来,深度神经网络的快速

发展推动了机器学习的再次繁荣,随着机器学习技

术的日益成熟,各种机器学习方法也在动力学建模

中得到广泛应用.目前基于机器学习的机械臂动力

学建模方法主要有基于高斯过程[7-9]和基于深度学

习[10-12]的动力学建模方法,但这两种纯粹基于数据

的数据驱动建模方法有明显的缺点,它们的泛化性

能较差,预测结果容易违背物理定律.为克服纯数

据驱动动力学建模方法的缺陷,学者们尝试在神经

网络中引入物理规律[13],Lutter等[14,15]通过在神

经网络中引入拉格朗日方程提出了深度拉格朗日

神经网络(LNN),研究表明LNN预测输出满足能

量守恒定律,其在无监督学习下能很好地实现系统

的惯性力、科氏力与重力的分解.
  

基于数据驱动动力学模型进行机械臂控制方面

的研究已有许多[16-18],但基本上是基于纯数据驱动

的方法,到目前为止,虽然基于物理规律的神经网络

已取得一定程度的突破[19-21],但将此方法应用于控

制的研究很少.Qian等[22]针对机械臂的轨迹跟踪问

题,利用LNN设计了反步控制器,能保证在有界的

干扰下实现对期望轨迹的稳定跟踪,但结果仅适用

于自由运动中的单个机械臂的运动控制.针对主从

机械臂的双边控制系统,1993年Lawrence等[23]提

出了位置反馈与力反馈的四通道结构,该结构能够

将主从端机械臂的速度与力信息传递到彼此的另一

端,表明了四通道结构在保证系统的稳定性和透明

性上的有效性,该控制器假设对主从阻抗有完全的

了解,然而,在遥操作系统中不确定性不可避免,针
对各种不确定的影响,大量学者开展了自适应控制

研究,以解决系统不确定性对控制的影响[24-26].
  

本文以机械臂末端执行器中较常见的二连杆

机械臂系统为对象,基于系统输入输出数据开展数

据驱动动力学建模和自适应控制研究.首先分别基

于输入输出数据采用LNN建立主从端系统数据

驱动动力学模型,然后利用所建的LNN模型设计

控制律,基于Lyapunov稳定性理论,提出了基于

逆动力学方法的遥操作四通道自适应双边控制器.
进一步通过仿真研究证明了所提出方法的有效性.

1 二连杆双边控制系统数据驱动动力学模型

1.1 二连杆基于LNN的数据驱动模型
  

考虑如图1所示在垂直平面内运动的二连杆

系统.假定两根杆均为匀质杆,不考虑杆的轴向位

移和法向的柔性,两臂都视为理想的刚性臂,两关

节为理想关节,没有附加质量.与基座相连的杆

OA 的质量和长度分别为m1 和l1,杆AB 的质量

和长度分别为m2 和l2;在关节O 和关节A 处施加

的力矩分别为τ1 和τ2.

图1 二连杆平面机械臂系统示意图

Fig.1 Sketch
 

map
 

of
 

double
 

pendulum
 

manipulator
 

system
  

根据拉格朗日第二类方程,二连杆系统的动力
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学方程为:

M(θ)θ
··
+C(θ,θ

·
)θ
·
+G(θ)=τ (1)

其中:M(θ)为二连杆机械臂的广义质量阵,G(θ)

为与机械臂所受重力有关的矩阵,C(θ,θ
·
)为机械

臂的科氏惯性力与离心惯性力有关的矩阵,θ =
θ1 θ2  T 为关节O 和关节A 处的角位移;

  M(θ)=

1
3m1l21+m2l21

1
2m2l1l2cos(θ1-θ2)

1
2m2l1l2cos(θ1-θ2)

1
3m2l22

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁

,G(θ)=

1
2m1l1+m2l1  gsinθ1

1
2m2gl2sinθ2

􀭠

􀭡
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁

,

C(θ,θ
·
)=

0 1
2m2l1l2sin(θ1-θ2)θ

·

2

-
1
2m2l1l2sin(θ1-θ2)θ

·

1 0

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁

,τ=[τ1 τ2]T .

  由于传统建模方法需要利用系统的质量、长度

等参数信息,当系统结构参数改变时,基于系统参

数的传统建模方法难以获得准确的系统动力学模

型,因此考虑利用输入输出数据和LNN[14]建立二

连杆机械臂的动力学模型.
  

在机械臂的两个关节上分别施加力矩τ 获得

两个机械臂的关节转角、角速度和角加速度.利用

多组输入输出数据(θ,θ
·
,θ
··
,τ),采用LNN进行数

据驱动动力学建模.具体过程如图2所示.

图2 拉格朗日神经网络结构图

Fig.2 Structure
 

diagram
 

of
 

Lagrangian
 

neural
 

networks

  考虑到系统势能和广义质量阵均为关节角θ
的函数,LNN在模型训练的过程中将关节角位移

θ输入第一个全连接神经网络训练获得系统的势

能V,输入第二个全连接神经网络获得质量阵.全
连接神经网络第i层隐藏层的输出hi 为

hi=tanh(Wihi-1+bi) (2)

其中,Wi、bi 分别为第i层的权重与偏置矩阵,tanh
为所用的激活函数.

  

神经网络的输出层输出O 一般为

O=Wnhn-1+bn (3)

其中,n 为网络总层数.
  

由于系统质量阵通常具有正定对称的形式,可
以通过第二个全连接神经网络先获得下三角矩阵

m,具有如下形式[14]:

m=
md1 0

m01 md2

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 (4)

其中,m01、md1、md2 为第二个全连接神经网络的输出.
  

系统的广义质量阵由其正定对称性可写为

M
^

=mmT ,利用已知的角速度θ
·

得到系统的动能:

T
^
=
1
2θ

·TM
^
θ
·

(5)
  

从而利用拉格朗日函数L
^
=T

^
-V

^ 、拉格朗日

方程和已知的角加速度数据θ
··
,获得对应的关节预

测力矩:

τ^=
d
dt
∂L
^

∂θ
· -
∂L
^

∂θ=M
^ (θ)θ

··
+C

^(θ,θ
·
)θ
·
+G

^(θ)

(6)
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其中,

G
^(θ)= -

∂V
^

∂θ
,C
^(θ,θ

·
)θ
·
=M

^
·

θ
·
-
1
2
∂
∂θ
(θ
·TM

^
θ
·
)􀭠

􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 T .

  然后利用训练数据中输入力矩数据τ 构造损

失函数:

Loss=
1
n∑

n

i=1
|τ
^(i)-τ(i)| (7)

其中,· 表示向量的1范数,τ^(i)、τ(i)分别表示第

i个样本的预测力矩和真实力矩,n 为样本数.
  

优化器的选择在训练神经网络的过程中十分

重要,优化器基于梯度下降调整模型参数以最小化

损失函数.在本文中采用了 AdamW 优化器,其更

新公式为[27]:

gt=�θft(θt-1)

mt=β1mt-1+(1-β1)gt

vt=β2vt-1+(1-β2)g2
t

m
~

t=
mt

1-βt
1

v
~
t=

vt

1-βt
2

θt=θt-1-α
m
~

t

v
~
t +ε

+ωθt-1  (8)

其中f(θ)为参数θ 下的损失函数,�为梯度算子,

则gt 为梯度.β1,β2∈[0,1)为当前估计的指数衰

减率,一般取0.9和0.999.mt 和vt 分别是梯度的

一阶和二阶矩估计,m~t 和v~t 分别是更新校正后的

一阶和二阶矩估计.α 是学习率,一般取0.001,根
据实际问题调整.ε 是一个防止除零的很小的常

数,一般取10-8,ω 为权重衰减因子,一般取0.01.
  

LNN训练完成后可以直接利用神经网络输出

获得广义质量阵 M
^ (θ),但惯性力项C

^(θ,θ
·
)θ
·

和

G
^(θ)不能直接获得,需要考虑 M

^ (θ)对时间的导

数和∂V
^

∂θ.M
^
·

(θ)可表示为:

M
^
·

(θ)=
d
dt
(mmT)=m

·
mT+mm

·T (9)

将m 重新写为向量形式,则m
·

可以通过下面公式

获得:

m
·
=
∂m
∂θθ

·
+∑

n

i=1

∂m
∂Wi

∂Wi

∂t +∑
n

i=1

∂m
∂bi

∂bi

∂t
(10)

由于
∂Wi

∂t
、∂bi

∂t
均为0.因此m· =

∂m
∂θθ

·
,其中有:

 

∂m
∂θ =

∂m
∂hn-1

∂hn-1

∂hn-2
,…,∂h1

∂θ
(11)

∂hi

∂hi-1
=diag[tanh'(Wihi-1+bi)]Wi (12)

  

与式(10)~(12)类似推导可得到C
^(θ,θ

·
)θ
·
,

G
^(θ)具体推导过程详见[14].

1.2 基于二连杆机械臂数据驱动动力学模型的双

边控制系统

  

主从端机械臂双边控制系统可表示为:

Mm(θm)θ
··

m+Cm(θm,θ
·

m)θ
·

m+Gm(θ
·

m)=τm+τh

(13)

Ms(θs)θ
··

s+Cs(θs,θ
·

s)θ
·

s+Gs(θ
·

s)=τs-τe

(14)

  

其中,下标m和s分别表示主端机械臂和从端机

械臂,θi 为 关 节 角 位 移,Mi(θi)、Ci(θi,θ
·

i)、

Gi(θi)分别为系统广义质量阵、科氏惯性力和离心

惯性力阵、与重力有关的矩阵,τi 为控制力矩阵(i=
m,s).τh 表示操作者与主端机械臂间的相互作用

力,τe表示从端交互环境施与从端机械臂间的相互

作用力,τh和τe可用如下弹簧-阻尼模型描述[28]:

τh=τh0-(Bhθ
·

m+Khθm) (15)

τe=Beθ
·

s+Keθs (16)
其中Bh、Be、Kh、Ke 为正定对角矩阵,τh0 为操纵者

施加的力.
  

考虑主从端均为二连杆机械臂的情况,当主从

端机械臂能通过测量的方式获得输入关节扭矩τ

和输出关节角数据(θ,θ
·
,θ
··
)时,可以采用基于

LNN模型的双边控制系统动力学方程进行控制律

的设计:

M
^
m(θm)θ

··

m+C
^
m(θm,θ

·

m)θ
·

m+G
^
m(θm)=τm+τh

 

(17)

M
^
s(θs)θ

··

s+C
^
s(θs,θ

·

s)θ
·

s+G
^
s(θs)=τs-τe

(18)

其中,M
^

i(θi)、C
^
i(θi,θ

·

i)θ
·

i 和G
^
i(θi)分别为基于

LNN训练所获得的广义质量阵,科氏惯性力和离

心惯性力阵以及与重力有关的矩阵,τi 为控制力

矩阵(i=m,s).

2 控制器设计和稳定性分析
  

双边控制的目的是保证从端系统在受到外界
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环境力的情况下能够有效地跟踪主端系统的运动,

同时能够在主端准确地反映从端系统所受到的外

界环境力,即双边控制系统具有一定程度的稳定性

和透明性.下面针对二连杆机械臂双边控制系统

(13)和(14),考虑采用自适应方法基于LNN动力

学模型(17)和(18)设计四通道双边控制器,以保证

系统具有良好的跟踪性能和力反馈性能.
  

首先定义跟踪误差为:

em =θm-θs (19)

es=θs-θm (20)
  

考虑基于LNN的数据驱动动力学模型(17)

和(18),分别在主从端设计控制器:

τm=M
^
m(θ
··

s-Kmde
·
m-Kmpem+um)+C

^
mθ
·

m+

 G
^
m+M

^
mC2(τh-τe)-τh (21)

τs=M
^
s(θ
··

m-Ksde
·
s-Kspes+us)+C

^
sθ
·

s+

 G
^
s+M

^
sC3(τh-τe)+τe (22)

其中,Kmd、Kmp、C2、Ksd、Ksp 和C3 均为正定对角矩

阵,ui(i=m,s)为鲁棒控制项,形式为:

ui=-ΔKid(t)e
·
i-ΔKip(t)ei-Fi(t) (23)

其 中 ΔKid(t)、ΔKip(t)、Fi(t)均 为 时 变 的 增 益

矩阵.
  

将控制律(21)、(22)代入方程(13)、(14),并记

C
^
iθ
·

i+G
^
i=Z

^
i,Ciθ

·

i+Gi=Zi,Z
~
i=Z

^

i-Zi,Δτ=τh-
τe,得:

θ
··

m=M
^ -1
m [M

^
m(θ
··

s-Kmde
·
m-Kmpem+um)+

 Z
~
m+M

^
mC2Δτ] (24)

θ
··

s=M
^ -1
s [M

^
s(θ
··

m-Ksde
·
m-Kspem+us)+

 Z
~
s+M

^
sC3Δτ] (25)

不失一般性,可令Mi
-1M
^

i=I+ΔMi ,则方程(24)

和(25)可写为:

e··m+Kmde
·
m+Kmpem=um+ϕm (26)

e··s+Ksde
·
s+Kspes=us+ϕs (27)

其中:

ϕm=ΔMm(θ
··

s-Kmde
·
m-Kmpem+um)+

 M-1
mZ

~
m+C2Δτ+ΔMmC2Δτ,

ϕs=ΔMs(θ
··

m-Ksde
·
s-Kspes+us)+

 M-1
sZ

~
s+C3Δτ+ΔMsC3Δτ.

  

令e=em,则es=-e,方程(26)式乘以C-1
2 减

去方程(27)乘以C-1
3

[29]得到:

e··+Kde
·
+Kpe=φm-φs (28)

其中:

Kd=(C-1
2 +C-1

3 )-1(C-1
2 Kmd+C-1

3 Ksd),

Kp=(C-1
2 +C-1

3 )-1(C-1
2 Kmp+C-1

3 Ksp),

φm=K2um+K2ΔMm(θ
··

s-Kmde
·
m-Kmpem+

 um)+K2M-1
mZ

~
m+K1ΔMmΔτ,

φs=K3us+K3ΔMs(θ
··

m-Ksde
·
s-Kspes+

 us)+K3M-1
sZ

~
s+K1ΔMsΔτ,

K1=(C-1
2 +C-1

3 )-1,K2=(C-1
2 +C-1

3 )-1C-1
2 ,

K3=(C-1
2 +C-1

3 )-1C-1
3 .

则(28)在状态空间方程可写为:

E
·
=(A0+ΔA)E+(B0+ΔB)Um+
 (C0+ΔC)Us+W (29)

其中E=[eT e
·T]T,Um=[0 um]T,Us=[0 us]T,

A0=
0 I

-Kp -Kd

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 ,ΔA=

0 0
ΔA21 ΔA22

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 ,

B0=[0 K2],ΔB=[0 K2ΔMm],C0=[0 -K3],

ΔC=[0 -K3ΔMs],W =[0 W12]T ,
 

ΔA21=-K2ΔMmKmp+K3ΔMsKsp,

ΔA22=-K2ΔMmKmd+K3ΔMsKsd,

W12=K2ΔMmθ
··

s+K2M-1
mZ

~
m+K1ΔMmΔτ-

K3ΔMsθ
··

m-K3M-1
sZ

~
s-K1ΔMsΔτ.

定理: 对 于 给 定 系 统 (29),假 定 ΔKid(t)、

ΔKip(t)、Fi(t)是导数非零的快变量,W、菪A、菪B
和菪C 是导数为零的慢变量[30],则满足方程(23)形

式的鲁棒控制器ui 有如下的自适应律:

F
·

i(t)=ai1Si (30)

ΔK
·

ip(t)=ai2SieT
i (31)

ΔK
·

id(t)=ai3Sie
·T
i (32)

其中:aij >0(j=1,2,3),S=PT
2e+PT

3e
·,则Sm=

S,Ss=-S,其中P2,P3 为对称正定矩阵P 的分块

矩阵,即P=
P1 P2

P2 P3

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 且满足Lyapunov方程:

AT
0P+PA0=-Q (33)

其中:Q=QT>0为任意正定对称矩阵.此时,双边

控制机械臂系统将在控制器(21)和(22)的作用下

稳定,也即当t→ ∞ 时,e→0,e
·
→0.

证明: 将鲁棒控制器(23)代入方程(29)中并整理

可得:
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E
·
=A0E+ 0 H  T (34)

其中:

H= (Mm1+Nm1)+(Ms1+Ns1)+(Mm2+Nm2)e+
(Ms2+Ns2)e+(Mm3+Nm3)e

·
+(Ms3+Ns3)e

·,

Mm1=K2ΔMmθ
··

s+K2M-1
mZ

~
m+K1ΔMmΔτ,

Ms1=-K3ΔMsθ
··

m-K3M-1
sZ

~
s-K1ΔMsΔτ,

Nm1= -K2(I+ΔMm)Fm(t),Mm2= -K2ΔMmKmp,

Ns1=K3(I+ΔMs)Fs(t),Ms2=-K3ΔMsKsp,

Nm2= -K2(I+ΔMm)ΔKmp(t),Mm3= -K2ΔMmKmd,

Ns2= -K3(I+ΔMs)ΔKsp(t),Ms3= -K3ΔMsKsd,

Nm3=-K2(I+ΔMm)ΔKmd(t),

Ns3=-K3(I+ΔMs)ΔKsd(t).
取Lyapunov函数为:

V=ETPE+tr[(Mm1+Nm1)Tm1(Mm1+Nm1)]+
tr[(Ms1+Ns1)Ts1(Ms1+Ns1)]+tr[(Mm2+
Nm2)Tm2(Mm2+Nm2)]+tr[(Ms2+
Ns2)Ts2(Ms2+Ns2)]+tr[(Mm3+
Nm3)Tm3(Mm3+Nm3)]+tr[(Ms3+
Ns3)Ts3(Ms3+Ns3)] (35)

Tij 为正定对角矩阵,对(35)求导得:

 V
·
=-ETQE+2ETP

0
H
􀭠
􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 +2tr[(Mm1+

Nm1)Tm1N
·

m1]+2tr[(Ms1+Ns1)Ts1N
·

s1]+

2tr[(Mm2+Nm2)Tm2N
·

m2]+2tr[(Ms2+

Ns2)Ts2N
·

s2]+2tr[(Mm3+Nm3)Tm3N
·

m3]+

2tr[(Ms3+Ns3)Ts3N
·

s3] (36)

由矩阵迹的性质,可得:

ETP
0
H
􀭠
􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 =tr{(Mm1+Nm1)T pT

2 pT
3  E}+

 tr{(Ms1+Ns1)T pT
2 pT

3  E}+
 tr{(Mm2+Nm2)T pT

2 pT
3  EeT}+

 tr{(Ms2+Ns2)T pT
2 pT

3  EeT}+

 tr{(Mm3+Nm3)T pT
2 pT

3  Ee
·T}+

 tr{(Ms3+Ns3)T pT
2 pT

3  Ee
·T} (37)

将方程(37)代入方程(36)得:

V
·
=-ETQE+2tr[(Mm1+Nm1)T(S+

 Tm1N
·

m1)]+2tr[(Ms1+Ns1)T(S+

 Ts1N
·

s1)]+2tr[(Mm2+Nm2)T(SeT+

 Tm2N
·

m2)]+2tr[(Ms2+Ns2)T{SeT+

 Ts2N
·

s2)]+2tr[(Mm3+Nm3)T{Se
·T+

 Tm3N
·

m3)]+2tr[(Ms3+Ns3)T{Se
·T+

 Ts3N
·

s3)] (38)

其中:

Tmj =
1

amj

(I+ΔMm)-1K-1
2

Tsj =
1
asj

(I+ΔMs)-1K-1
3

将自适应率(30)~(32)代入方程(38),可得:

V
·
=-ETQE <0 (39)

因此,双边控制系统在所提出控制器的作用下,闭
环系统渐近稳定.

3 数值仿真

3.1 模型验证

为验证数据驱动建模的有效性,进行数值仿真.
考虑在垂直平面内运动的二连杆平面机械臂系统,

机械臂参数为m1=m2=1
 

kg,l1=l2=1
 

m,采用基

于LNN的数据驱动方法建立系统动力学模型.
首先根据方程(1)在机械臂两个关节上施加不

同的输入力矩τ,获得用于训练的输入输出数据时间

历程;其次,所使用的两个全连接神经网络均包含两

层隐藏层,每层含128个神经元,训练时采用512的

批量大小,在包含248条轨迹[每条轨迹含2500个

数据对 (θ,θ
·
,θ
··
,τ)]的数据集上进行离线训练,最

大训练轮次(epoch)为1000,并在由40条轨迹组成

的验证集上进行验证;最后利用早停法在每个训练

集结束后计算验证集损失,取验证集损失最小的模

型,当60个轮次内验证集损失都没有比上一次记录

的最小损失更小则退出训练.优化器采用AdamW,

其中学习率为0.0001,其他参数为默认值.
  

图3给出了训练好的LNN模型在初始状态为

θ=
π
2

π
3

􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 T、θ
·

=0 0  T ,力矩为τ=0 0  T

下的预测时间历程响应、响应误差、惯性力矩、科氏

力与离心力矩、重力矩的结果.图中实线为LNN
模型所得到的结果,虚线为实际系统动力学模型

(1)得到的结果.
从图3

 

、图4可以看到,利用LNN训练得到的

数据驱动模型,能够较为准确地获得系统的动力学

响应曲线,与真实模型得到的曲线进行比较,误差
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图3 LNN模型与实际模型两关节时间历程曲线

Fig.3 The
 

temporal
 

response
 

curve
 

of
 

two
 

joints
 

of
 

the
 

LNN
 

model
 

and
 

the
 

actual
 

model

图4 LNN模型与实际模型两关节角位移误差曲线

Fig.4 The
 

angular
 

displacement
 

error
 

curves
 

of
 

the
 

two-joint
 

of
 

the
 

LNN
 

model
 

and
 

the
 

actual
 

model

图5 LNN模型与实际模型惯性力矩对比图

Fig.5 The
 

comparison
 

diagram
 

of
 

inertia
 

torque
 

of
 

the
 

LNN
 

model
 

and
 

the
 

actual
 

model

图6 LNN模型与实际模型科氏力与离心力矩对比图

Fig.6 The
 

comparison
 

diagram
 

of
 

coriolis
 

and
 

centrifugal
 

torque
 

of
 

the
 

LNN
 

model
 

and
 

the
 

actual
 

model

图7 LNN模型与实际模型重力力矩对比图

Fig.7 The
 

comparison
 

diagram
 

of
 

gravity
 

torque
 

of
 

the
 

LNN
 

model
 

and
 

the
 

actual
 

model

图8 基于LNN模型的计算力矩法轨迹跟踪曲线

Fig.8 Trajectory
 

tracking
 

curve
 

using
 

the
 

computed
 

torque
 

method
 

based
 

on
 

the
 

LNN
 

model

图9 基于LNN模型的计算力矩法轨迹跟踪误差曲线

Fig.9 Trajectory
 

tracking
 

error
 

curve
 

using
 

the
 

computed
 

torque
 

method
 

based
 

on
 

the
 

LNN
 

model

在可接受的范围之内.图5、图7可以看出,基于

LNN所获得的惯性力矩、科氏和离心力矩以及重

力矩项与原系统相比误差较小,说明了LNN模型

的准确性.图8
 

、图9是基于LNN模型使用计算力

矩法跟踪正弦轨迹所得的结果,可以看到基于

LNN的计算力矩控制器虽然存在一定的误差,但
已经可以达到较好的控制效果,且基于LNN设计

的控制器控制结果误差在一定范围内变化.

3.2 双边控制
  

考虑基于数据驱动模型所设计的四通道鲁棒

15
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控制器,进行数值仿真验证其鲁棒稳定性和透明

性.仿真中主端机械臂真实参数为 m1m =m2m =
1

 

kg,l1m=l2m=1
 

m;假定从端机械臂初始时与主

端机械臂系统参数一致,随着设备的磨损、老化等

情况其结构参数已经变为m1s=m2s=0.8
 

kg,l1s=
l2s=0.8

 

m.当从端系统参数变化时,考虑下面两

种控制进行对比:
  

(1)主从端控制器均按照理想参数设计,即控

制器设计时主从端参数为mm1=mm2=1
 

kg,lm1=
lm2=1

 

m,ms1=ms2=1
 

kg,ls1=ls2=1
 

m,直接基

于系统动力学方程设计四通道双边控制器,其具体

形式为:

τm=Mm(θ
··

s-Kmde
·
m-Kmpem)+Cmθ

·

m+
 Gm+MmC2(τh-τe)-τh (40)

τs=Ms(θ
··

m-Ksde
·
s-Kspes)+Csθ

·

s+
 Gs+MsC3(τh-τe)+τe (41)
  

(2)采用LNN和所采集的输入输出数据建立

系统动力学方程并设计控制律(21)、(22),即采用

本文所提出的方法进行控制.
3.2.1 从端机械臂自由

  

首先考虑从端环境不受外界环境约束的情况,

即方程(16)中τe=0.四通道双边控制方法(1)的控

制律增益矩阵为:Kmp= Ksp=diag(20,20),
 

Kmd=
Ksd = diag(10,10),C2 = diag(0.1,0.1),C3 =
diag(0.01,0.01).为便于比较,本文所提出的控制

方法(2)中aij=0.12,Q=diag(1,1,1,1),其他参数

与(1)相同.主端操纵者与主端机械臂之间相互作用

力(15)中 参 数:Kh = diag(100,200)
 

N·m/rad,

Bh=diag(20,20)
 

N·m·s/rad.分别考虑主端操纵

者所施加的力矩为常力矩τh0=100(1,1)T
 

N·m和

时变力矩τh0=100(sint,sint)
 

N·m两种情况.
图10、图11给出了双边控制系统在控制器

(1)作用下双边控制系统主端机械臂和从端机械臂

的角位移跟踪曲线,从中可以看到,当从端机械臂

不受外界环境约束时,由于结构参数的变化,基于

原系统动力学方程所设计的控制律已经不能满足

控制跟踪的需求,在常力矩作用下跟踪存在稳态误

差,在正弦力矩作用下系统的响应也不符合实际.
图12、图13给出了在本文基于数据驱动动力学模

型所设计的控制律(2)作用下主端机械臂和从端机

械臂的角位移跟踪曲线,从中可以看到,无论操纵

者施加在主端的力矩为常力矩还是正弦力矩,从端

图10 控制器(1)在主端常力矩作用下机械臂角位移跟踪曲线

Fig.10 The
 

angular
 

tracking
 

curve
 

of
 

the
 

master
 

manipulator
 

under
 

constant
 

torque
 

using
 

controller(1)

图11 控制器(1)在主端正弦力矩作用下机械臂角位移跟踪曲线

Fig.11 The
 

angular
 

tracking
 

curve
 

of
 

the
 

master
 

manipulator
 

under
 

sinusoidal
 

torque
 

using
 

controller(1)

图12 本文所设计的控制器(2)在主端常力矩作用下的
机械臂角位移跟踪曲线

Fig.12 The
 

angular
 

tracking
 

curve
 

of
 

the
 

master
 

manipulator
 

under
 

constant
 

torque
 

using
 

the
 

designed
 

controller(2)
 

in
 

this
 

paper

图13 本文所设计的控制器(2)在主端正弦力矩作用下的
机械臂角位移跟踪曲线

Fig.13 The
 

angular
 

tracking
 

curve
 

of
 

the
 

master
 

manipulator
 

under
 

sinusoidal
 

torque
 

using
 

the
 

designed
 

controller(2)
 

in
 

this
 

paper
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系统都能很好地跟踪主端系统的运动,具有很好的

跟踪性能.
3.2.2 从端机械臂受到外界环境约束

  

然后考虑从端机械臂受外界环境约束的情况,

方程(16)中的参数Ke=diag(500,500)
 

N·m/rad,

Be=diag(30,30)
 

N·m·s/rad.两种控制方法中控

制增益与3.2.1中相同.同样地,分别考虑主端操

纵者所施加的力矩为常力矩τh0=100(1,1)T
 

N·m
和时变力矩τh0=100(sint,sint)

 

N·m两种情况.
  

图14~图17分别给出了四通道双边控制器

(1)在主端常力矩、正弦力矩作用下机械臂角位移

跟踪曲线,外界环境与从端相互作用力和主端操纵

者与主端相互作用力的对比曲线.从中可以看出,

当结构参数发生变化后,原先设计的四通道双边控

制器不能保证从端系统有效地跟踪主端系统的运

动,当操纵者施加力矩无论是常力矩或者正弦力

矩,从端机械臂与主端机械臂的角位移会出现一定

的偏差,从端不能很好地跟踪主端系统的运动,而
且主端也不能正确的反馈从端机械臂与外界环境

的相互作用力,其控制的鲁棒性和透明性受到了一

图14 控制器(1)在主端常力矩作用下机械臂角位移跟踪曲线

Fig.14 The
 

angular
 

tracking
 

curve
 

of
 

the
 

master
 

manipulator
 

under
 

constant
 

torque
 

using
 

controller(1)

图15 控制器(1)在主端常力矩作用下机械臂从端环境力与
主端环境力关系曲线

Fig.15 
 

The
 

relationship
 

curve
 

between
 

the
 

master
 

and
 

slave
 

environmental
 

torque
 

of
 

the
 

master
 

manipulator
 

under
 

constant
 

torque
 

using
 

controller(1)

图16 控制器(1)主端正弦力矩作用下机械臂角位移跟踪曲线

Fig.16 The
 

angular
 

tracking
 

curve
 

of
 

the
 

master
 

manipulator
 

under
 

sinusoidal
 

torque
 

using
 

controller(1)

图17 控制器(1)在主端正弦力矩作用下机械臂从端环境力
与主端环境力关系曲线

Fig.17 
 

The
 

relationship
 

curve
 

between
 

the
 

master
 

and
 

slave
 

environmental
 

torque
 

of
 

the
 

master
 

manipulator
 

under
 

sinusoidal
 

torque
 

using
 

controller(1)

定程度的影响.图18~图21分别给出了本文所设

计的控制器(2)在主端常力矩、正弦力矩作用下机

械臂角位移跟踪曲线,外界环境与从端相互作用力

和主端操纵者与主端相互作用力的对比曲线.从中

可以看出,本文提出的基于LNN的自适应控制器

具有良好的位置跟踪性能与力跟踪性能,能够保证

从端系统有效地跟踪主端系统运动的同时,也能正

确地在主端反馈从端机械臂所受到的从端环境力,

图18 本文所设计的控制器(2)在主端常力矩作用下
机械臂角位移跟踪曲线

Fig.18 
 

The
 

angular
 

tracking
 

curve
 

of
 

the
 

master
 

manipulator
 

under
 

constant
 

torque
 

using
 

the
 

designed
 

controller(2)
 

in
 

this
 

paper
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图19 本文所设计控制器(2)在主端常力矩作用下机械臂
从端环境力与主端环境力关系曲线

Fig.19 The
 

relationship
 

curve
 

between
 

the
 

master
 

and
 

slave
 

environmental
 

torque
 

of
 

the
 

master
 

manipulator
 

under
 

constant
 

torque
 

using
 

the
 

designed
 

controller(2)
 

in
 

this
 

paper

图20 本文所设计的控制(2)在主端正弦力矩作用下
机械臂角位移跟踪曲线

Fig.20 The
 

angular
 

tracking
 

curve
 

of
 

the
 

master
 

manipulator
 

under
 

sinusoidal
 

torque
 

using
 

the
 

designed
 

controller(2)
 

in
 

this
 

paper

图21 本文所设计的控制器(2)在主端正弦力矩作用下
机械臂从端环境力与主端环境力关系曲线

Fig.21 The
 

relationship
 

curve
 

between
 

the
 

master
 

and
 

slave
 

environmental
 

torque
 

of
 

the
 

master
 

manipulator
 

under
 

sinusoidal
 

torque
 

using
 

the
 

designed
 

controller(2)
 

in
 

this
 

paper

证明了所提出控制器的有效性.因此,当二连杆机

械臂系统工作一段时间以后,所设计的双边控制律

不能有效地控制系统的动力学行为且系统参数不

能有效测量时,可以考虑基于系统输入输出数据建

立数据驱动的系统动力学方程,并利用数据驱动动

力学方程设计相应的控制律,同样能够保证系统的

稳定性和透明性.

4 结论
  

本文以二连杆双边控制系统为对象,基于系统

输入输出数据建立数据驱动动力学模型并开展双

边遥操作系统的自适应鲁棒控制研究.仿真结果表

明:本文基于系统输入输出数据和LNN建立的数

据驱动动力学模型能够准确地描述系统的动力学

行为;当系统参数变化以后,基于最初系统所设计

的控制律不能有效地对系统进行控制,而基于数据

驱动的动力学模型设计的控制器在主从端环境变

化时都能够保证从端系统有效地跟踪主端系统的

运动,并将从端机械臂受到的外界环境力及时地反

馈给主端系统.仿真结果验证了所设计的控制器的

有效性.
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