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Abstract In response to the impact of strong vibrations generated by vibratory rollers on driver comfort

«

during construction, a four-degree-of-freedom “vibratory roller-foundation” dynamic model was estab-
lished. By analyzing the seat vibrations under both grounded and bouncing conditions, it was found that
the seat acceleration responses exceeded the defined comfort range. Therefore, a linear quadratic regula-
tor (LQR) control strategy was introduced, and the control parameters were optimized using a particle
swarm algorithm. The results indicated that after the implementation of LQR control, the seat accelera-
tion under grounded conditions was significantly reduced., meeting comfort requirements; although im-
provements were observed under bouncing conditions, the acceleration remained above the “very uncom-
fortable”range. After particle swarm optimization, the acceleration amplitudes in both grounded and bouncing
conditions were further reduced, both conforming to operational comfort standards, thereby providing a theoreti-

cal basis for the design and optimization of the vibration reduction system in vibratory rollers.
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(a) The grounding condition
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Fig. 1 Dynamic model of the “vibrating roller-subgrade” coupled system
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Fig. 2 Frequency spectrum responses of seat acceleration and vibration wheel acceleration under various operating conditions
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