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Abstract While the speed of high-speed trains is accelerating, the problem of noise pollution caused by
high-speed trains is becoming more prominent. In this study, based on the low-frequency noise pollution
environment of high-speed trains, a composite sound absorption structure is designed based on the perfo-
rated structure theory and porous materials to control the low-frequency noise in a limited space, and the
effective sound absorption is realized in the frequency range of about 221~2000 Hz. Based on the statis-
tical energy method, indoor noise generated by aerodynamic noise excitation of a high-speed train is sim-
ulated and predicted. The results show that laying a composite sound absorption structure for a train is
an effective noise reduction measure, which can reduce the noise value of high-speed trains to a certain

extent and improve the comfort of the trains.

Key words low-{requency broadband absorption, porous material, resonators with extended tubes,

statistical energy method, noise prediction
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sound absorbing board structure
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Table 1 Initial parameters of extended tube
Substructure d/mm [/mm
1 7 10
2 6 2
3 8 11
4 5 2
5 8 4
6 9 1
7 7 12
8 8 2
9 9 20
10 6 7
11 6 3
12 9 26
13 9 11
14 9 30
15 6 7
16 8 23
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Table 2 Model numbers and parameters

Parameter A A, Ay
a,/mm 39 50 59
q. 0.15 0.25 0. 35
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Fig. 2 Influence of cavity ratio change on sound absorption
results of sound absorbing board structure
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Table 3 Optimization parameters of extended tube

Substructure d/mm //mm
1 9.98 1.08
2 9.02 17. 26
3 8.62 22.23
4 9.97 28.38
5 8.47 17.40
6 8.29 3.08
7 9.91 14.03
8 9.61 7.31
9 8.05 1.43
10 8.12 5.45
11 6. 89 13.90
12 5. 31 1. 69
13 7.01 9.83
14 7.22 7.26
15 9.67 14. 04
16 5.77 2. 36
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Fig. 3 Comparison of the results before and after optimization

of the sound absorbing board structure
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