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Abstract As space exploration missions put higher requirements on spacecraft, new spacecraft often
carry liquid fuels with large mass proportions, while a large number of flexible materials are widely used
in spacecraft design and construction. Presently, the exploration of the dynamics and control of such
spacecraft in aerospace engineering remains confined to discrete models of flexible appendages and
equivalent mechanical representations of liquid sloshing. Challenges such as spillover effects and the non-
linearity inherent in liquid sloshing pose formidable obstacles, impeding the depth and comprehensive-
ness of research into in-orbit control. In this paper, the smooth particle hydrodynamics (SPH) method
and the distributed parameter method are used to model and analyse the liquid-filled flexible spacecraft
with respect to the complex coupling characteristics. Firstly, the sloshing part of the liquid is modeled

by the SPH method, and the liquid sloshing force and torque are calculated by the SPH method in a non-
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inertial system; then, a liquid-filled flexible spacecraft rigid-flexible-liquid coupled dynamics model was
established by adopting Hamilton’s principle and the distributed parameter method, balancing the com-
putational steps between the SPH method and the spacecraft dynamics model, and integrating the liquid
sloshing model into the rigid-flexible coupled model of the flexible spacecraft. Based on this model, two
cases of symmetric vibration and antisymmetric vibration are designed for numerical simulation, and the coupling
relationship between rigid-flexible-liquid is analysed in comparison with the rigid-flexible coupling model. The
simulation results show that the liquid sloshing absorbs the vibration energy of the flexible appendages

and excites the oscillation of the rigid body, which makes the rigid-flexible coupling model no longer sat-

isfy the symmetric vibration or anti-symmetric vibration characteristics.
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Table 1 Setting of simulation parameters

Parameters Value
M/kg 200
J/(kg + m®) 160
R/m 2
M, /kg 5
M, /kg 5
L,/m 5
L,/m 5
EI/(N+m") 120
o/ (kg/m) 20
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Fig. 3 Demonstration of initial liquid level for spherical tank
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Fig.4 Demonstration of pre-equilibrium liquid level for spherical
tanks in a micro-gravity condition
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