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Abstract The topological interface states in elastic periodic structures have attracted wide attention and
research interest due to their unique transmission characteristics and eigenmodes with interface energy
enhancement effects. This characteristic provides new ideas for designing novel elastic waveguides and
developing quantum devices in next-generation information technology. Moreover, it is also valuable for
classical wave modulation. This article systematically introduces the research progress of one-dimensional to-
pological interface states in phonon and elastic wave systems, which elaborates on concepts related to topolo-
gical research, such as band inversion, Zak phase by taking the Su-Schrieffer-Heeger (SSH) model as an
example. It deeply explores one-dimensional topological interface states’ design ideas and current re-
search progress. It also summarizes the active regulation methods of the eigenfrequency of topological
states: multi-field coupling modulation and mechanically modulation. Finally, it explores possible direc-

tions for future research on topological interface states.
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