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Reconstruction Method of Solar Wing Displacement Field
under Rigid-Flexible Coupled Response”
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Abstract With the wide application of large flexible solar wings in new generation spacecraft, the de-
mand for real-time monitoring of the displacement field induced by rigid-flexible coupling dynamics is be-
coming increasingly prominent. Aiming at the limitation that the existing displacement field reconstruc-
tion studies are mostly based on the static working conditions and are difficult to adapt to the complex
dynamic excitation of the spacecraft, this paper proposes a dynamic displacement field reconstruction
method based on the hybrid coordinate method and the assumed modal method. By analyzing the rigid-
flexible coupled spacecraft dynamics model, a high-precision reconstruction algorithm for the global dis-
placement field of the solar wing is constructed by combining the modal analysis techniques. The method
can realize real-time reconstruction of the dynamic displacement field under the coupling conditions of at-
titude maneuver and flexible vibration with only a small amount of sensing data. The results show that
the proposed method can realize high-precision reconstruction of the global displacement field of the solar

wing under dynamic excitation.
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