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摘要 本文提出了一种新的时空非线性变换,并将其应用于一类时变非线性系统的求解问题.通过坐标变

换推导了系统的可积条件,得到可解的常系数线性微分方程.基于逆变换和常系数线性微分方程的解析解,

导出了原系统的精确解.把1/2阶贝塞尔方程作为该类时变非线性系统的特殊情况,并利用该理论得到其

精确解.最后,通过一些数值仿真验证了该方法的有效性和正确性.

关键词 时变系统, 变换理论, 精确解, 可积性条件

中图分类号:O316 文献标志码:A

Exact
 

Solution
 

for
 

a
 

Class
 

of
 

Time-Varying
 

Nonlinear
 

Systems*

Liu
 

Chang1† Wang
 

Guofu1 Song
 

Yuhan1 Jiang
 

Wenan2

(1.
 

College
 

of
 

Physics,
 

Liaoning
 

University,
 

Shenyang 110036,
 

China)

(2.
 

Faculty
 

of
 

Civil
 

Engineering
 

and
 

Mechanics,
 

Jiangsu
 

University,
 

Zhenjinag 212013,
 

China)

Abstract In
 

this
 

paper,
 

a
 

new
 

space-time
 

nonlinear
 

transformation
 

is
 

proposed
 

and
 

applied
 

to
 

a
 

class
 

of
 

time-varying
 

nonlinear
 

systems.
 

Then
 

the
 

integrability
 

condition
 

of
 

the
 

system
 

is
 

derived
 

by
 

coordinate
 

transformation,
 

and
 

the
 

linear
 

differential
 

equation
 

with
 

constant
 

coefficients
 

is
 

obtained.
 

Based
 

on
 

the
 

inverse
 

nonlinear
 

transformation
 

and
 

the
 

analytic
 

solution
 

of
 

linear
 

differential
 

equations
 

with
 

constant
 

coefficients,
 

the
 

exact
 

solution
 

of
 

the
 

original
 

system
 

is
 

derived.
 

The
 

1/2
 

order
 

Bessel
 

equation
 

is
 

taken
 

as
 

a
 

special
 

case
 

of
 

this
 

kind
 

of
 

time-varying
 

nonlinear
 

system,
 

and
 

its
 

exact
 

solution
 

is
 

obtained
 

by
 

using
 

this
 

theory.
 

Finally,
 

the
 

effectiveness
 

and
 

correctness
 

of
 

the
 

proposed
 

method
 

are
 

verified
 

by
 

some
 

nu-
merical

 

simulations.
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引言
  

大多数工程系统都是非线性的,它们的精确解

一般很难找到.然而,为了准确预测系统的动力学行

为,有必要探索非线性系统的精确解[1-5].因此,研究

者们通常使用许多近似解析方法来求解非线性系统

的近 似 解 析 解,常 用 的 有 摄 动 法[6-8]、谐 波 平 衡

法[9,10]、平均法[11-13]和同伦分析法[14].此外,求解非

线性系统精确解的方法主要有两种,即李对称变

换[15-18],Prelle-Singer方法[19-21].最近,Almendral和
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Sanjuan[22]采用Lie对称法,指出在一定的参数关系

下,亥姆霍兹振子是可积的.
 

Chandrasekar等[23]证

明了不受外力的Duffing-van
 

der
 

Pol振子对于一组

适当的参数是可积的.Duartea和da
 

Mota[24]提出了

一种半算法来探索有理微分方程的初等第一积分.
从上述内容可以看出,已经有一些方法可以求解常

系数非线性系统的精确解.然而,关于时变非线性系

统的精确解却很少有报道.
  

时变非线性系统的发展已被广泛报道,但目前

还没有找到求解精确解的固定方法.因此,引入了

许多近似方法,如有 Walsh函数方法[25]、Walsh级

数(STWS)方法[26-28]、Haar小波分析法[29]和数值

方法[30].因此,迫切需要找到求解时变系统精确解

的有效方法.
  

本文证明,可以通过时空非线性变换得到时变

非线性系统的精确解.提出了一种新的时空非线性

变换,用以约化时变非线性系统,并推导出系统的

可积条件,从而得到原系统的精确解,并把1/2阶

贝塞尔方程作为该类时变非线性系统的特例,求出

了其精确解.最后,通过一些数值仿真验证了精确

解的正确性.

1 数学模型
  

考虑一个时变的非线性动力学系统,其相应的

数学模型可以描述为

t2x··+g(n,t,x,x
·)+f(n,t,x,x

·)=0 (1)

其中,x 表示位移,t使用时间,n 描述一个实数,

g(n,t,x,x
·)、f(n,t,x,x

·)表示非线性时变项.

2 时空非线性变换
  

非线性系统的解通常不明显,传统的线性变换

不能满足解的要求.Nayfeh[31]指出,可以引入非线

性变换来简化非线性问题.因此,利用非线性空间

坐标变换或时空非线性变换来求解非线性系统是

一种可行的方法.为了解决时变非线性系统(1),我
们引入了一个时空变换

x(t)=t-ny(t) (2)

可以得到等式(2)的一阶导数为

x· =-nt-n-1y+t-ny
· (3)

二阶导数为

x··=n(n+1)t-n-2y-2nt-n-1y
·
+t-ny

·· (4)

把式(2)~(4)代入等式(1),可以得到

t-n+2y
··
+(g-2nt)t-ny

·
+

 [n(n+1)t-2-ngt-3+ft-2t-n+2]y=0 (5)

进而可得系统的可积条件

g-2nt=pt2,n(n+1)t-2-ngt-3+ft-2=q
(6)

其中p、q为任意的常数.因此

g(n,t,x,x
·)=pt2+2nt,

f(n,t,x,x
·)=qt2-n+n2 (7)

然后等式(1)变为

t2x··+(2nt+pt2)x
·
+(qt2-n+n2)x=0 (8)

根据方程(5)和(6),方程(1)可以转化为一个简单

的方程

y
··
+py

·
+qy=0 (9)

该方程为二阶常系数齐次线性方程.其通解为

y(t)=c1e
r1t+c2e

r2t (10)

其中,c1、c2 是任意的常数.r1 和r2 为此方程的特

征方程的两个实根.方程(10)代入变换式(2)可得

到原方程的精确解

x(t)=t-n(c1e
r1t+c2e

r2t) (11)

当方程(9)的特征方程的两个实根相等,则其通解

变为

y(t)=(c1+c2t)ert (12)

方程(12)代入变换(2)式可得到原方程的精确解

x(t)=t-n(c1+c2t)ert (13)

当方程(9)的特征方程的解为一对共轭复根,则其

通解变为

y(t)=eαt(c1cosβt+c2sinβt) (14)

其中,共轭复根为r1=α+iβ,r2=α-iβ,方程

(14)代入变换式(2)可得到原方程的精确解

x(t)=t-neαt(c1cosβt+c2sinβt) (15)

3 一类特殊的情况

令可积条件式(6)中的常数p=0,时变非线性

系统(1)在可积条件下可以重新写成如下形式

t2x··+2ntx
·
+(qt2-n+n2)x=0 (16)

则方程(9)变为

y
··
+qy=0 (17)

因此,式(17)的解析解为

y(t)=c1cosqt+c2sinqt (18)

由式(18),可以得到式(16)的精确解

x(t)=t-n(c1cosqt+c2sinqt) (19)

这是一种特殊情况.此外,当p=0时,并令n=1/2,
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q=1,方程(16)可以简化为1/2阶贝塞尔方程,即

t2x··+tx·+(t2-1/4)x=0 (20)

其中c1、c2 为积分常数,则1/2阶贝塞尔方程的通

解为

x(t)=t-1/2(c1cost+c2sint) (21)

这与文献[30]结果一致.
 

显然,与1/2阶贝塞尔方程

相比,时变非线性系统式(16)是更为一般的情况.

4 数值验证
  

通过具体的算例进行数值仿真,来验证精确解

的正确性以及有效性.

4.1 1/2阶贝塞尔方程

考虑1/2阶贝塞尔方程,其另一种形式的经典

解析解是

x1/2(t)=
2
πtsint

(22)

图1(a)描绘了方程(21)、(22)的精确解和用

MATLAB中ode45函数对方程(20)求得的数值

解,其中黑线描述了所提出方法的精确解(21),蓝
色加号表示经典的解析解式(22),红色空心圆表示

ode45方法的数值解.下图中使用了相同的符号,说

图1 方程(8)的精确解(21)、解析解(22)和数值解(20)
Fig.1 The

 

exact
 

solution
 

of
 

the
 

equation
 

(21)、classical
 

analytical
 

solution
 

(22)
 

and
 

numerical
 

data
 

(20)
 

of
 

Eq.(8)

明不再重复.同时,在三维空间绘制了这些方法得

到的(t,x,y)结果图,其中,y=x
·.在图1(b)中可

以看到方程(20)的精确解、经典解析解和数值解是

一致的.

4.2 系统参数p=0,q=1时的解
  

考虑p=0,q=1的情况,讨论了不同阶n 的

方程(16)的解.
  

图2描述了九个不同n 值情况下,时变非线性

系统的精确解(19)和数值解(16).此外,图3绘制

了系统在3D空间中不同阶次的精确解和数值解.
从图2和图3中可以清楚地看出,方程(19)中的精

确解与从龙格-库塔数值积分中获得的不同实数

n 的数值解相匹配.
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图2 方程(16)在不同阶数下精确解和数值解:
 

(a)
 

n=0.1;(b)
 

n=0.25;(c)
 

n=0.5;(d)
 

n=0.75;
(e)

 

n=1.0;(f)
 

n=1.25;(g)
 

n=1.5;(h)
 

n=1.75;(i)
 

n=2.0
Fig.2 The

 

exact
 

solutions
 

and
 

numerical
 

data
 

of
 

Eq.
 

(16)
 

at
 

different
 

orders:
 

(a)
 

n=0.1;(b)
 

n=0.25;
(c)

 

n=0.5;(d)
 

n=0.75;(e)
 

n=1.0;(f)
 

n=1.25;(g)
 

n=1.5;(h)
 

n=1.75;(i)
 

n=2.0

图3 方程(16)在三维空间中不同阶数下精确解和数值解:
 

(a)
 

n=0.1;(b)
 

n=0.25;(c)
 

n=0.5;
(d)

 

n=0.75;(e)
 

n=1.0;(f)
 

n=1.25;(g)
 

n=1.5;(h)
 

n=1.75;(i)
 

n=2.0
Fig.3 The

 

exact
 

solution
 

and
 

numerical
 

data
 

of
 

Eq.
 

(16)
 

in
 

3D
 

space:
 

(a)
 

n=0.1;(b)
 

n=0.25;
(c)

 

n=0.5;(d)
 

n=0.75;(e)
 

n=1.0;(f)
 

n=1.25;(g)
 

n=1.5;(h)
 

n=1.75;(i)
 

n=2.0

4.3 系统参数p=0,q≠1时的解
  

我们考虑p=0,q≠1的情况,讨论了不同阶n
和不同q的方程(16)的解.

  

图4给出了三个不同q值和三个不同n 值时,

时变非线性系统的方程(19)的精确解和方程(16)

的数值解.此外,图5显示了系统在三维空间中不

同阶次的精确解和数值解.应当注意,方程(19)中
的精确解与从龙格-库塔数值算法获得的数值解

非常一致.
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图4 方程(8)在p=0,不同阶数和不同q取值下精确解和数值解:(a)n=0.5,q=0.5;(b)n=1.25,q=0.5;(c)n=1.5,q=0.5;
(d)n=0.5,q=1.25;(e)n=1.25,q=1.25;(f)n=1.5,q=1.25;(g)n=0.5,q=1.5;(h)n=1.25,q=1.5;(i)n=1.5,q=1.5

Fig.4 The
 

exact
 

solution
 

and
 

numerical
 

data
 

of
 

Eq.(8)
 

under
 

p=0,different
 

orders
 

and
 

q
 

values:(a)n=0.5,q=0.5;(b)n=1.25,q=0.5;
(c)n=1.5,q=0.5;(d)n=0.5,q=1.25;(e)n=1.25,q=1.25;(f)n=1.5,q=1.25;(g)n=0.5,q=1.5;(h)n=1.25,q=1.5;(i)n=1.5,q=1.5

图5 方程(8)在三维空间中p=0,不同阶数和不同q取值下精确解和数值数据:(a)n=0.5,q=0.5;(b)n=1.25,q=0.5;(c)n=1.5,
q=0.5;(d)n=0.5,q=1.25;(e)n=1.25,q=1.25;(f)n=1.5,q=1.25;(g)n=0.5,q=1.5;(h)n=1.25,q=1.5;(i)n=1.5,q=1.5

Fig.5 The
 

exact
 

solution
 

and
 

numerical
 

data
 

of
 

Eq.(8)
 

under
 

p=0,
 

different
 

orders
 

and
 

q
 

values
 

in
 

3D
 

space
 

:(a)n=0.5,q=0.5;(b)n=1.25,q=0.5;
(c)n=1.5,q=0.5;(d)n=0.5,q=1.25;(e)n=1.25,q=1.25;(f)n=1.5,q=1.25;(g)n=0.5,q=1.5;(h)n=1.25,q=1.5;(i)n=1.5,q=1.5

4.4 系统参数q=0时的解
  

考虑p=1,q=0和p=-1,q=0的情况,讨
论了不同阶n 的方程(8)的解.

  

图6(a)~(c)给出了p=1,q=0时,时变非线

性系统在不同阶次的精确解(11)和数值解(8),图

6(d)~(f)给出了p=-1,q=0时,时变非线性系

统的方程(11)的精确解和方程(8)的数值解在不同

阶次的精确解和数值解.
  

图7(a)~(c)给出了p=1,q=0时,时变非线性
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系统在三维空间中不同阶次的精确解(11)和数值解

(8),图7(d)~(f)给出了p=-1,q=0时,时变非线

性系统的方程(11)的精确解和方程(8)的数值解在

三维空间中不同阶次的精确解和数值解.
应当注意,方程(11)中的精确解与从龙格-库

塔数值积分中获得的不同实数n 的数值解相匹配.

图6 方程(8)在q=0,不同阶数和不同p 取值下精确解和数值解:
(a)n=0.5,p=1;(b)

 

n=1.0,p=1;(c)n=1.5,p=1;(d)n=0.5,p=-1;(e)n=1.0,p=-1;(f)n=1.5,p=-1
Fig.6 The

 

exact
 

solution
 

and
 

numerical
 

data
 

of
 

Eq.(8)
 

under
 

q=0,
 

different
 

orders
 

and
 

p
 

values:
(a)n=0.5,p=1;(b)

 

n=1.0,p=1;(c)n=1.5,p=1;(d)n=0.5,p=-1;(e)n=1.0,p=-1;(f)n=1.5,p=-1

图7 方程(8)在三维空间中q=0,不同阶数和不同p 取值下精确解和数值解:
(a)n=0.5,p=1;(b)

 

n=1.0,p=1;(c)n=1.5,p=1;(d)n=0.5,p=-1;(e)n=1.0,p=-1;(f)n=1.5,p=-1
Fig.7 The

 

exact
 

solution
 

and
 

numerical
 

data
 

of
 

Eq.(8)
 

under
 

q=0,
 

different
 

orders
 

and
 

p
 

values
 

in
 

3D
 

space:
(a)n=0.5,p=1;(b)

 

n=1.0,p=1;(c)n=1.5,p=1;(d)n=0.5,p=-1;(e)n=1.0,p=-1;(f)n=1.5,p=-1

4.5 系统参数q=4,p≠0时的解
  

讨论方程(8)在p=5,q=4和p=-5,q=4
的情况下不同阶n 的方程的解.

  

图8(a)~(c)给出了p=5,q=4时,时变非线

性系统在不同阶次的精确解(11)和数值解(8),图

8(d)~(f)给出了p=-5,q=4时,时变非线性系

统在不同阶次的精确解(11)和数值解(8).
  

图9(a)~(c)给出了p=-5,q=4时,时变非

线性系统在三维空间中不同阶次的精确解(11)和

数值解(8),图9(d)~(f)给出了p=-5,q=4时,

时变非线性系统在三维空间中不同阶次的精确解

(11)和数值解(8).
  

应当注意,方程(11)中的精确解与从龙格-库

塔数值算法获得的数值结果非常一致.

16



动 力 学 与 控 制 学 报 2025年第23卷

图8 方程(8)在p=5,
 

q=4和p=-5,
 

q=4取值下不同阶数的精确解和数值解,
p=5,q=4:

 

(a)n=0.5,(b)n=1.0,(c)n=1.5;
 

p=-5,
 

q=4:
 

(d)n=0.5,(e)n=1.0,
 

(f)n=1.5
Fig.8 The

 

exact
 

solutions
 

and
 

numerical
 

data
 

of
 

different
 

orders
 

of
 

Eq.(8)
 

at
 

p=5,
 

q=4
 

and
 

p=-5,
 

q=4,
p=5,

 

q=4:
 

(a)n=0.5,(b)n=1.0,(c)n=1.5;p=-5,q=4:(d)n=0.5,(e)n=1.0,(f)n=1.5

图9 方程(8)在p=5,
 

q=4和p=-5,
 

q=4取值下3D空间中不同阶数的精确解和数值解,
p=5,

 

q=4:
 

(a)n=0.5,
 

(b)n=1.0,
 

(c)n=1.5;p=-5,
 

q=4:(d)n=0.5,
 

(e)n=1.0,
 

(f)n=1.5
Fig.9 The

 

exact
 

solutions
 

and
 

numerical
 

data
 

of
 

different
 

orders
 

of
 

Eq.(8)
 

in
 

3D
 

space
 

at
 

p=5,
 

q=4
 

and
 

p=-5,
 

q=4,
p=5,

 

q=4:
 

(a)n=0.5,(b)n=1.0,(c)n=1.5;p=-5,
 

q=4:(d)n=0.5,(e)n=1.0,(f)n=1.5

4.6 系统参数p=4,q=5时的解
  

讨论方程(8)在p=4,q=5的情况下不同阶n
的方程的解.此取值会出现共轭复根情况.

  

图10给出了三个不同n 值时,时变非线性系

统的精确解(15)和数值解(8)在二维和三维对比,

其中图10(a)~(c)和图10(d)~(f)分别是二维空

间和三维空间中不同阶次的精确解和数值数据.结
果显示方程(15)中的精确解与从龙格-库塔数值

算法获得的数值解非常一致.
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图10 方程(8)在p=4,
 

q=5取值下不同阶数的精确解和数值解:
 

(a)
 

n=0.5;
 

(b)
 

n=1.0;
 

(c)
 

n=1.5;(d)
 

n=0.5;
 

(e)
 

n=1.0;
 

(f)
 

n=1.5
Fig.10 The

 

exact
 

solutions
 

and
 

numerical
 

data
 

of
 

Eq.(8)
 

with
 

different
 

orders
 

at
 

p=4
 

and
 

q=5:
 

(a)
 

n=0.5;(b)
 

n=1.0;(c)
 

n=1.5;(d)
 

n=0.5;(e)
 

n=1.0;(f)
 

n=1.5

4.7 系统参数p=2,q=1时的解
  

讨论方程(8)在p=2,q=1的情况下不同阶n的

方程的解.在此取值下,方程的特征方程会出现两个

实根相等的情况.方程(8)的精确解变为方程(13).
图11(a)~(c)给出了p=2,q=1时,时变非

线性系统在不同阶次的精确解(13)和数值解(8),

图11(d)~(f)给出了p=2,q=1时,时变非线性

系统在三维空间中不同阶次的精确解(13)和数值

解(8).结果显示方程(13)中的精确解与从龙格-
库塔数值积分中获得的不同实数n 的数值解相

匹配.

图11 方程(8)在p=2,q=1取值下不同阶数的精确解和数值解:(a)n=0.5;(b)n=1.0;(c)n=1.5;(d)n=0.5;(e)n=1.0;(f)n=1.5
Fig.11 The

 

exact
 

solutions
 

and
 

numerical
 

data
 

of
 

Eq.(8)
 

with
 

different
 

orders
 

at
 

p=2
 

and
 

q=1
 

values:
 

(a)n=0.5;(b)n=1.0;(c)n=1.5;
(d)

 

n=0.5;(e)
 

n=1.0;(f)
 

n=1.5

4.8 系统参数p=-2,q=1时的解
  

讨论方程(8)在p=-2,q=1的情况下不同

阶n 的方程的解.在此取值下,方程的特征方程会

出现两个实根相等的情况.方程(8)的精确解变为

方程(13).图12(a)~(c)给出了p=-2,q=1时,

时变非线性系统的方程在不同阶次的精确解(13)

和数值解(8),图12(d)~(f)给出了p=-2,
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图12 方程(8)在p=-2,
 

q=1取值下不同阶数的精确解和数值解:
 

(a)
 

n=0.5;(b)
 

n=1.0;(c)
 

n=1.5;(d)
 

n=0.5;(e)
 

n=1.0;(f)
 

n=1.5
Fig.12 The

 

exact
 

solutions
 

and
 

numerical
 

data
 

of
 

Eq.(8)
 

with
 

different
 

orders
 

at
 

p=-2
 

and
 

q=1:
 

(a)n=0.5;
(b)

 

n=1.0;(c)
 

n=1.5;(d)
 

n=0.5;(e)
 

n=1.0;(f)
 

n=1.5

q=1时变非线性系统在三维空间中不同阶次的精

确解(13)和数值解(8).结果显示方程(13)中的精

确解与从龙格-库塔数值积分中获得的不同实数

n 的数值解相匹配.

5 结论
  

本文采用坐标变换方法,约化一类时变非线性

系统,提出了一种新的时空非线性变换来构造系统

的精确解.通过引入坐标变换,得到了系统的可积

条件以及约化的常系数线性微分方程,然后利用约

化后的方程的解析解,推导出了原系统的精确解.
此外,给出了作为该类时变非线性系统的特例———

1/2阶贝塞尔方程等一些具体算例进行验证.结果

表明,本文所提出的非线性变换方法求解一类时变

非线性系统的精确解是正确的并且是有效的.
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