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Abstract In this paper., a new space-time nonlinear transformation is proposed and applied to a class of
time-varying nonlinear systems. Then the integrability condition of the system is derived by coordinate
transformation, and the linear differential equation with constant coefficients is obtained. Based on the
inverse nonlinear transformation and the analytic solution of linear differential equations with constant
coefficients, the exact solution of the original system is derived. The 1/2 order Bessel equation is taken
as a special case of this kind of time-varying nonlinear system, and its exact solution is obtained by using
this theory. Finally, the effectiveness and correctness of the proposed method are verified by some nu-

merical simulations.
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Fig. 12 The exact solutions and numerical data of Eq. (8) with different orders at p=—2 and ¢g=1: (a)n=0.5;
(b)) n=1.0;(c) n=1.5;(d) n=0.5;(e) n=1.0;(f) n=1.5

g =1 WA AELRPE R Se 1 = 4k 25 ] v S (6] B K
T i (13) VB A (8). &5 1 i /R 7 2 (13) Hh A G
T i 55 D\ e A% — JE B B5C(E FR 3 v AR A5 0 AN [ S 8K
n (18 B A fige A DS .

5 g

AR SCR FH AL bR AR 4 7 1k, 29k — S B AR R Lk
RGP T — MR i A R M AR O M i R G
ARG B fife. GRS A AR AR AR e, AR B T R SR AT AR
ZAE UL KA A H R BRSO R RS R4
A5 B 07 T B e AT i 4R S T DR T R R
WAL 45 T AR RS AR AR v R G i R ) —
1/2 B DU € R Jy R 55 — 26 BRS04 A7 40 k. 25
FEHY A S B A Al e M AR 48 5 v SR i — S AR
A2 1 2R 8 BRE i 2 LE A 1Y T B A R,

S % ik

(1] b &, &R, R RS AL M3 I 2 0F 50 il
(1. s SRl aEd4, 2023, 21(8): 6—18.
SUN Z K. JIN C. Advances in nonlinear dynamics
for delayed systems [J]. Journal of Dynamics and
Control, 2023, 21(8): 6—18. (in Chinese)

T, BREME, TR, % KEZILRSHMEAZ
AR AL, B S GF R, 2024, 22(1).
27—36.

WANG Z, MAO X Y, DING H, et al. Analysis of

[2]

flexural coupled forced vibration of high-aspect ratio
plate [J]. Journal of Dynamics and Control, 2024,
22(1) . 27—36.
MRS, TREF. VLB 01 4R35 3 1 Ak 5 42 2 A d=
gEl)]. 3 )y S 444, 2024, 22(2) : 100—110.

CHEN X Y, ZHANG S. Research on movement

(in Chinese)

[3]

performance and motion control of manipulator with

load [J]. Journal of Dynamics and Control, 2024,

[4]

(5]

(6]

[8]

[9]

[10]

22(2): 100—110. (in Chinese)

BCR, M. R R, A TR A T AT R T Y
BHLR Z BRI [T]. 3 = 55 =W,
2024, 22(9) . 37—44,

GUAN Y L, WANG P, LIU B Q. Parametric vi-
bration analysis of stay cables using a super-thin e-
lastic rod model [J]. Journal of Dynamics and Con-
trol, 2024, 22(9): 37—44. (in Chinese)

FHW. W, R RGNS R T 18] 1 g
e [T, gy S 24, 2022, 20(1) . 18—27.
WANG ] T, XIE Y. Energy transfer between non-
linear coupled oscillators in conservative systems
[J]. Journal of Dynamics and Control, 2022, 20
(1): 18—27. (in Chinese)

PRZYBYLSKI J, GASIORSKI G. Nonlinear vibra-
tions of elastic beam with piezoelectric actuators
[J]. Journal of Sound and Vibration, 2018, 437
150—165.

MEI X T, ZHOU S X, YANG Z C, et al. A tri-

stable energy harvester in rotational motion:
Modeling, theoretical analyses and experiments []].
Journal of Sound and Vibration, 2020, 469:;
115142,

NIEDERGESAB B, PAPANGELO A, GROLET
A, et al. Experimental observations of nonlinear vi-
bration localization in a cyclic chain of weakly cou-
pled nonlinear oscillators [J]. Journal of Sound and
Vibration, 2021, 497. 115952.

WANG Q S, YAN Z P, DAI H H. An efficient
multiple harmonic balance method for computing
quasi-periodic responses of nonlinear systems []].
Journal of Sound and Vibration, 2023, 554:
117700.

LEADENHAM S, ERTURK A. M-shaped asym-
metric nonlinear oscillator for broadband vibration
energy harvesting: Harmonic balance analysis and

experimental validation [J]. Journal of Sound and



o503

XU &5 - — S I A8l e M R T BAORS  fip 65

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

(19]

[20]

[21]

Vibration, 2014, 333(23): 6209—6223.

KUMAR G, MALAS A. Controlling mode-coupling
instability in friction-induced vibration by accelera-
tion feedback [J]. Journal of Sound and Vibration,
2022, 539 117273.

ZHANG X X, XU J, JI ] C. Modelling and tuning
for a time-delayed vibration absorber with friction
[J]. Journal of Sound and Vibration, 2018, 424
137—157.

LIU Y L, LIU L Q, DOSTAL L, et al. The appli-
cability of stochastic averaging method to solve the
ship rolling response excited by narrow-band waves
[J7. Ocean Engineering, 2022, 251: 111109.
MARINCA V, HERISANU N. Determination of
periodic solutions for the motion of a particle on a
rotating parabola by means of the optimal Homoto-
py asymptotic method [J]. Journal of Sound and Vi-
bration, 2010, 329(9): 1450—1459.

HERUR . =B, Boar o7 B 2 i 1 2 05 ik (M.
JEmT: BRg AL, 2012,

MEI F X, WU H B. Analytical mechanics methods
of differential equations [ M ]. Beijing: Science
Press, 2012. (in Chinese)

HYDON P E. Symmetry methods for differential e-
quations [M]. Cambridge, UK: Cambridge Univer-
sity Press, 2000.

CHEB-TERRAB E S, DUARTE L G S, DA MO-
TA L A C P. Computer algebra solving of second or-
der ODEs using symmetry methods [J]. Computer
Physics Communications, 1998, 108(1): 90— 114.
TIWARI A K, PANDEY S N, SENTHILVELAN
M, et al. Lie point symmetries classification of the
mixed Liénard-type equation [J]. Nonlinear Dynamics,
2015, 82(4) . 1953—1968.

PRELLE M J. SINGER M F, PRELLE M J, et al.
Elementary first integrals of differential equations
[C]//Transactions of the American Mathematical
Society, 1983, 279(1): 215—229.

MAN Y K. First integrals of autonomous systems
of differential equations and the Prelle-Singer proce-
dure [J]. Journal of Physics A: Mathematical and
General, 1994, 27(10): 329—332.

MAN Y K, MACCALLUM M A H. A rational ap-

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

proach to the Prelle-Singer algorithm [J]. Journal of
Symbolic Computation, 1997, 24(1) . 31—43.
ALMENDRAL J A, SANJU N M A F. Integrabili-
ty and symmetries for the Helmholtz oscillator with
friction [J]. Journal of Physics A: Mathematical
and General, 2003, 36(3): 695—710.
CHANDRASEKAR V K, SENTHILVELAN M,
LAKSHMANAN M. New aspects of integrability of
force-free Duffing-van der Pol oscillator and related
nonlinear systems [ J]. Journal of Physics A:
Mathematical and General, 2004, 37 (16): 4527 —
4534.

DUARTE L G S, DA MOTA L A CP. Finding ele-
mentary first integrals for rational second order ordi-
nary differential equations [J]. Journal of Mathe-
matical Physics, 2009, 50(1): 013514,

LEWIS F L, MERTZIOS B G, MARSZALEK W.
Analysis of singular bilinear systems using Walsh
functions [J]. IEE Proceedings D Control Theory
and Applications, 1991, 138(2): 89.
BALACHANDRAN K, MURUGESAN K. Analy-
sis of different systems via single-term Walsh series
method [ J].
Mathematics, 1990, 33(3/4): 171—179.
BALACHANDRAN K, MURUGESAN K. Analysis

International Journal of Computer

of nonlinear singular systems via STWS method [ ]].
International Journal of Computer Mathematics, 1990,
36(1/2): 9—12.

SEPEHRIAN B. RAZZAGHI M. Solution of time-
varying singular nonlinear systems by single-term
Walsh series [J]. Mathematical Problems in Engi-
neering, 2003, 2003(3).: 129—136.

HSIAO C H, WANG W ]. State analysis of time-
varying singular nonlinear systems via Haar wave-
lets [J]. Mathematics and Computers in Simula-
tion, 1999, 51(1/2): 91—100.

BALACHANDRAN K, MURUGESAN K. Numerical
solution of a singular nonlinear system from fluid
dynamics [J]. International Journal of Computer
Mathematics, 1991, 38(3/4). 211—218.
NAYFEH A H. The method of normal forms [ M].
Weinheim. Germany: Wiley-VCH. 2011.



