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摘要 在对数学模型进行离散求解的过程中,传统的数值方法只考虑线性局部的数值稳定性,难以完全真

实地长时间描述系统的动力学特性.本文采用李群描述刚体运动的位形,定义两种李群上的变分公式,根据

离散 Hamilton变分原理与离散Legendre变换分别推导出刚体系统的 Hamilton体系下的一般格式的李群

变分积分子和 Hamel变分积分子.我们将这两种李群变分积分算法对3D车摆模型进行仿真计算,对比研

究了算法在保持系统群结构、系统能量等方面的性质.仿真结果表明,Hamel变分积分子较一般格式的李群

变分积分子精度更高,且能更好地保持系统群结构与能量.
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Abstract In
 

the
 

process
 

of
 

discretely
 

solving
 

mathematical
 

models,
 

traditional
 

numerical
 

methods
 

pri-
marily

 

focus
 

on
 

linear
 

local
 

numerical
 

stability,
 

making
 

it
 

difficult
 

to
 

accurately
 

describe
 

the
 

system􀆶s
 

dynamic
 

characteristics
 

over
 

long
 

periods.
 

This
 

paper
 

uses
 

Lie
 

groups
 

to
 

describe
 

the
 

configuration
 

of
 

rigid
 

body
 

motion
 

and
 

defines
 

two
 

variational
 

formulas
 

on
 

Lie
 

groups.
 

By
 

applying
 

the
 

discrete
 

Hamilto-
nian

 

variational
 

principle
 

and
 

the
 

discrete
 

Legendre
 

transformation,
 

we
 

derive
 

the
 

general
 

forms
 

of
 

Lie
 

group
 

variational
 

integrators
 

and
 

Hamel
 

variational
 

integrators
 

for
 

the
 

Hamiltonian
 

system
 

of
 

the
 

rigid
 

body.
 

We
 

simulate
 

the
 

3D
 

car
 

pendulum
 

model
 

using
 

both
 

of
 

these
 

Lie
 

group
 

variational
 

integrator
 

algo-
rithms

 

and
 

compare
 

their
 

performance
 

in
 

preserving
 

the
 

system􀆶s
 

group
 

structure
 

and
 

energy.
 

Simula-
tion

 

results
 

show
 

that
 

the
 

Hamel
 

variational
 

integrator
 

achieves
 

higher
 

accuracy
 

than
 

the
 

general
 

form
 

of
 

the
 

Lie
 

group
 

variational
 

integrator
 

and
 

better
 

preserves
 

the
 

system􀆶s
 

group
 

structure
 

and
 

energy.
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引言
  

随着现代工程问题和科学问题的复杂性和维

度不断增加,对基于模型设计和分析的复杂数值方

法的需求也随之增长.对于这类问题,数值积分器

的定性特性对数值模拟的准确性和长期预测的可

靠性至关重要.在工程应用中,传统的数值方法没

有考虑底层物理系统的定性特征,比如,第一积分、

切丛上的李对称性或余切丛上的辛形式,这最终可

能产生不符合物理事实的误差[1].
为了解决刚体系统的运动常微分方程组在长

时间仿真中所出现的计算值与物理性质不符的问

题,我们需要发展可以保持刚体系统几何结构和物

理性质的保结构数值积分方法.保结构数值积分方

法能更好地展现力学和物理问题中的不变量,其核

心思想是将数值积分方法视为离散动力学系统,该
系统的流可以近似连续动力学系统的流,而不仅仅

关注轨迹的数值逼近情况[2].
  

在工程领域大部分系统的位形空间不是欧氏

空间而是微分流形,如果使用传统的基于欧氏空间

的动力学建模与数值算法难以完全真实地描述系统

的动力学特性.使用微分几何的方法来描述和分析

这些系统相比于传统欧氏空间中的向量更加自然和

简洁,分析结果也更加真实、可信[3,4].自由刚体的位

姿矩阵由刚体的质心位置矢量与刚体的旋转矩阵

确定,可以用两种经典李群表示,分别是SE(3)与

ℝ3×SO(3).相比于欧拉角方法直接用三个独立

的欧拉角参数表示旋转,李群方法无需在位形空间

进行全局参数化过程,避免了由此产生的奇异现

象[5];相比于四元数法、自然坐标法,李群方法并不

会引入额外的约束方程[6],减小了动力学方程的规

模,有助于提高计算效率.
  

传统的数值积分方法,如Runge-Kutta法[7],

通常既不保持第一积分,也不保持位形空间的特

征.然而,结合微分几何和数值积分方法的几何数

值积分方法能够保持系统的几何结构和物理性质.
其中由 Marsden提出的变分积分子不仅保持了系

统的辛结构,并且满足离散的 Noether定理[2],同

时保留了良好的能量性质.变分积分算法与李群建

模方法相结合得到李群变分积分子[8].李群变分积

分子能够自然地保持李群结构的同时保持系统的

辛结构.根据李群上变分公式的不同,本文介绍两

种李群变分积分子:一般格式的李群变分积分子和

Hamel变分积分子[9].
  

一般格式的李群变分积分算法是直接对李群

元素采取有限差分方法近似得到李代数元素的算

法.一般格式的李群变分积分算法已被应用于多体

动力学数值仿真[10-12]、几何控制[13,14]、机器学习[15]

等领域.Saccon等[16]将基于三维欧氏空间的变分

积分算法中点格式引申至李群变分积分算法中,并
讨论了该方法保持动量映射需要满足的条件.Lee
等[17]提出了多体系统的线性变分积分器,通过离

散递归牛顿-欧拉算法求解残差向量,以及铰接体

惯性算法计算更新迭代值,提高了计算效率.Shar-

ma等[18]将离散的能量守恒方程作为约束条件构

造了自适应步长的一般李群变分积分算法,它能够

更好地保持系统的能量.随后,Valentin等[19]将自

适应步长的一般李群变分积分格式扩展应用到一

般的黎曼流形上,更加具有普适意义.Leitz等[20]

基于单位四元数插值Galerkin方法与李群变分积

分子结合得到任意阶 Galerkin李群变分积分子,

它既能保持系统辛结构和动量,又能实现任意阶精

度和具有指数收敛性.
  

Bloch等[21]将活动标架法引入变分原理,
 

推

导了有限维力学系统的 Hamel动力学方程,通过

与离散变分方法相结合,得到了 Hamel变分积分

子.史 东 华 等[22]又 提 出 了 无 穷 维 力 学 系 统 的

Hamel形式,
 

进而研究了经典场论的 Hamel形

式,
 

并在此基础上构建了 Hamel场变分积分子.
高山等[23]构造一种可以处理非完整约束的低阶

Hamel变分积分子.Hamel场变分积分方法在抓

取机械臂[24]、几何精确梁[25,26]、柔性编队[27]等应

用中表现出保持系统动量和能量的特点.
  

本文工作如下:(1)基于 Marsden提出的变分

积分子理论,分别采用四阶Runge-Kutta法、四阶

辛Runge-Kutta法和四阶Galerkin变分积分子计

算一维谐振子的运动,对比研究两种李群算法的能

量误差特性,验证变分积分子相较于传统算法在保

结构方面的优越性.(2)基于李群李代数的离散

Hamilton方程,建立了Hamilton体系下刚体系统

动力学两种李群变分积分算法.分别采用两种算法

(一般格式的李群变分积分算法、Hamel变分积分

算法)计算了3D车摆的动力学问题,对比研究了

各算法的能量误差等特性.研究表明一般格式的李

2
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群变分积分算法与Hamel变分积分算法在长时间

保持系统结构、能量等方面存在显著优势,具有潜

在工程应用前景,如小天体长时间演化问题等.

1 变分积分子
  

考虑一个具有位形流形为Q 的系统,该系统的

离散状态空间为Q×Q,对于固定时间步长h=
(tf -t0)/N,离散轨迹{qk}Nk=0由系统所在时间序列

{tk =t0+kh k=0,…,N}上的构型来定义.利用

离散作用积分Sd=∑
N-1

k=0
Ld(qk,qk+1)来近似作用积

分S=∫
tf

t0
L(q,q

·)可以得到

Ld(qk,qk+1)≈∫
tk+1

tk
L(q,q

·)dt (1)

其中Ld(qk,qk+1)表示[tk,tk+1)区间的离散拉格

朗日量.
  

根据离散Hamilton变分原理对离散作用积分

进行变分

δ∑
N-1

k=0
Ld(qk,qk+1)=∑

N-1

k=0

∂Ld(qk,qk+1)
∂qk

δqk +
􀭠
􀭡

􀪁
􀪁

 
∂Ld(qk,qk+1)
∂qk+1

δqk+1
􀭤
􀭥

􀪁
􀪁 =0 (2)

得到离散的Euler-Lagrange方程

D2Ld(qk-1,qk)+D1Ld(qk,qk+1)=0, (3)

其中Di(i∈1,2)表示对离散Lagrange函数的第i
个变量的求导;k 的取值范围是1,…,N-1.通过

离散的
 

Legendre
 

变换得到 Hamilton体系下的变

分积分公式

pk =-D1Ld(qk,qk+1) (4)

pk+1=D2Ld(qk,qk+1) (5)

其中pk、pk+1 代表离散动量,详细推导读者可参考

文献[2].
  

为了证明变分积分方法相比于传统数值积分

方法的优势,我们分别使用四阶Runge-Kutta法、

四阶辛Runge-Kutta法和四阶Galerkin变分积分

子对一维谐振子进行仿真计算.一维谐振子的

Hamilton函数为

H =p2

2 +q2

2
(6)

  

从图1和图2可知:三种算法在计算位置和动

量方面是一致的,证明计算结果的正确性.从图3
可知:(1)四阶辛Runge-Kutta法和四阶 Galerkin
变分积分子要比四阶Runge-Kutta法能够更好地

保持系统能量不发散;(2)四阶Galerkin变分积分

子的能量波动要小于四阶Runge-Kutta法;(3)通
过三种算法对于一维谐振子的仿真计算可以证明

变分积分子相较于传统的数值算法在保持系统结

构(能量)方面是有优势的.

图1 一维谐振子的位置

Fig.1 Position
 

of
 

the
 

1D
 

harmonic
 

oscillator

图2 一维谐振子的动量

Fig.2 Momentum
 

of
 

the
 

1D
 

harmonic
 

oscillator

图3 一维谐振子的能量误差

Fig.3 Energy
 

error
 

of
 

the
 

1D
 

harmonic
 

oscillator

2 两种李群变分积分子

2.1 李群变分积分公式
  

考虑一个在李群G 上演化的系统,系统的离散

Lagrnage函数的位形空间是G×G,定义gk,fk∈G
满足

gk+1=gkfk (7)
其中gk、gk+1 分别是tk 和tk+1 时刻刚体的位形,

fk 是tk 时刻到tk+1 时刻刚体位形的变化;k 的取

值范 围 是1,…,N -1.离 散 的 Lagrnage函 数

Ld(gk,fk)采用Störmer-Verlet格式离散后可以

3
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表示为:

Ld(gk,fk)=T(fk)-
1
2hU

(gk)-
1
2hU

(gk+1)

(8)

T(fk)表示系统动能,U(gk)、U(gk+1)分别表示tk

和tk+1 时刻系统的势能.
  

根据离散Hamilton变分原理可以得到离散的

Euler-Lagrnage方程为

T*eLfk-1
·Dfk-1

Ld(gk-1,fk-1)-Ad*f-1
k
·

 [T*eLfk
·DfkLd(gk,fk)]+T*eLgk

·

 DgkLd(gk,fk)=0

gk+1=gkfk (9)

其中T*eLgk
、T*eLfk

表示拉回映射,Ad*f-1k
表示余

伴随映射,对运算符号的详细推导请读者参考文献

[8].
定义离散的Legendre变换  Ld:G×G→G×g*

 +Ld(gk,fk)=(gkfk,μk+1)

 -Ld(gk,fk)=(gk,μk) (10)

其中μk,μk+1∈g*,表示离散动量.
  

通过离散的Legendre变换得到 Hamilton体

系下的李群变分积分公式

μk =-T*eLgk
·DgkLdk +Ad*f-1

k

 (T*eLfk
·DfkLdk

)

μk+1=T*eLfk
·DfkLdk

(11)

2.2 一般格式的李群变分积分子
  

自由刚体运动的位形可以用SE(3)群描述,它
是 ℝ3 和特殊正交群SO(3)半直积,可以表示为

SE(3):g=
R x
0 1
􀭠
􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 ∈ ℝ4×4:R∈SO(3),x∈ℝ3  

(12)

其中,R 表示刚体的体坐标系相对于惯性坐标系的

旋转矩阵,x 表示刚体质心在惯性坐标系下的位置

矢量.在离散系统中SE(3)群的矩阵表示为

gk =
Rk xk

0 1
􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 ,fk =

Fk Yk

0 1
􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 ∈SE(3)

(13)

gk 表示刚体在tk 时刻位形的李群元素,其中Rk

表示tk 时刻在体坐标系o-e1e2e3 相对于惯性坐标

系O-E1E2E3 的旋转矩阵,xk 表示tk 时刻刚体的

质心位置矢量.fk 表示从tk 时刻到tk+1 时刻刚体

位形的李群元素变化量,其中Fk 表示从tk 时刻到

tk+1 时刻刚体旋转矩阵Rk 的变化量,Yk 表示从tk

时刻到tk+1 时刻刚体在体坐标系o-e1e2e3 下的质

心位置矢量的变化量[8].根据式(9)可以得到系统

刚体位形迭代公式

Rk+1=RkFk,
 

xk+1=xk +RkYk (14)
  

计算刚体系统的动能项T(fk),系统的总动

能等于系统的平动动能和转动动能之和TK+1/2,采
取中心差分格式可得到近似的tk+1 时刻刚体的角

速度[8]

S(ωk+1/2)≈
1
hRT

k(Rk+1-Rk)=
1
h
(Fk-I3×3)

(15)
其中S(ωk+1/2)为李代数空间so(3)元素,该李代

数空间与欧氏空间ℝ3,通过映射S:ℝ3 →so(3),
ω ∈ ℝ3 S(ω)∈so(3)来确定[10]

S(ω)=

0 -ω3 ω2

ω3 0 -ω1

-ω2 ω1 0

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁

,∀ω=

ω1

ω2

ω3

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁 ∈ ℝ

3

(16)
  

因此得到自由单刚体系统在[tk,tk+1)区间的

总动能为

T(fk)=
1
htr
[(I3×3-Fk)Jd]+

m
2hY

T
kYk (17)

其中mi 表示刚体的质量,Jd 表示刚体的非标准转

动惯量矩阵.它与标准转动惯量矩阵J的关系满足

Jd=
1
2tr
(J)I3×3-J,“tr”表示矩阵的迹.

  

根据离散 Hamilton变分原理与离散Legend-
re变换,得到自由单刚体系统一般格式李群变分积

分公式[8]

ShΠk +
h2

2Mk  =FkJd-JdFT
k (18)

Πk+1=FT
kΠk +

h
2F

T
kMk +

h
2Mk+1 (19)

xk+1=xk +
h
mγk -

h2

2m
∂Uk

∂xk
(20)

γk+1=γk -
h
2
∂Uk

∂xk
-

h
2
∂Uk+1

∂xk+1
(21)

其中Πk、Πk+1 分别为tk 和tk+1 时刻刚体的角动量.
γk、γk+1 分别代表tk 和tk+1 时刻刚体在惯性坐标系

中的线动量.上式中广义力矩S(Mk)的定义为[28]:

S(Mk)=
∂Uk

∂Rk

􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 TRk -RT

k
∂Uk

∂Rk

􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 (22)

4
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在一般格式的李群变分积分算法中式(18)是
隐式方程可以使用指数映射或者Cayley映射进行

求解[28].

2.3 李群上的Hamel变分积分子
  

Hamel离散格式的主要思想是直接对李代数

元素进行变分,并非先用李群元素近似表示李代数

元素后变分.其势能项、李群元素迭代格式与一般

李群变分积分算法一致.在 Hamilton最小作用量

原理中要求变分算子δ与时间微分算子d满足对

易关系

[δ,d]=0 (23)
在SO(3)群上的变分算子和时间微分算子也

要满足对易关系

d
dtRk =

d
dt t=0

Rt
k =RkS(ωk) (24)

δRk =
d
dε ε=0

Rε
k =RkS(ηk) (25)

其中S(ωk),S(ηk)∈so(3),将式(24)和式(25)代
入式中可得

δddtRk =δ[RkS(ωk)]

   =RkS(ηk)S(ωk)+RkδS(ωk),

d
dtδRk =

d
dt
[RkS(ηk)]

   =RkS(ωk)S(ηk)+Rk
d
dtS
(ηk)(26)

我们得到SO(3)群上的变分算子与微分算子满足

对易关系的充分条件

δS(ωk)-
d
dtS
(ηk)= S(ωk),S(ηk)  (27)

  

由于李代数空间与欧氏空间同构,可以在三维

欧氏空间中重新表示式(27)

δωk -η
·
k =[ωk,ηk] (28)

即可得到三维欧氏空间上角速度的变分公式.选取

中心差分格式可得到近似的tk+1/2 时刻刚体的角

速度和线速度的变分形式分别为[23]

δωk+1/2=η
·
k+1/2+[ωk+1/2,ηk+1/2]

   =
ηk+1-ηk

h + ωk+1/2,
ηk +ηk+1

2
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 (29)

δx·k+1/2=
δxk+1-δxk

h
(30)

  

因此得到自由单刚体系统在[tk,tk+1)区间的

总动能为

T(ωk+1/2,x
·
k+1/2)=

1
2ω

T
k+1/2Jωk+1/2+

 m
2

xk+1-xk

h  
T xk+1-xk

h  (31)

根据离散 Hamilton变分原理与离散Legendre变

换,得到自由单刚体系统Hamel变分积分公式[29]

Jωk =Jωk+1/2+
h
2
[ωk+1/2,Jωk+1/2]-

h
2Mn

(32)

mx·k =mx·k+1/2+
h
2
∂Uk

∂xk
(33)

Jωk+1=Jωk+1/2-

 h
2 ωk+1/2,Jωk+1/2  +

h
2Mk+1 (34)

mx·k+1=mx·k+1/2-
h
2
∂Uk+1

∂xk+1
(35)

Hamel变分积分算法在一步时间积分区间

[tk,tk+1]的迭代过程为:首先根据tk 时刻的ωk、x
·
k

求解式(32)和式(33)中的ωn+1/2、x
·
n+1/2;然后根据

李群元素的迭代公式Rk+1=RkexpSO(3)(hωk+1/2)、

xk+1=xk +hx·k+1/2 计算得到Rk+1、xk+1;最后求解

式(34)和式(35)中tk+1 时刻的ωk+1、x
·
k+1.其中

expso(3)是SO(3)群上定义的指数映射.

3 数值计算与分析
  

如图4所示,系统由一个3D摆连接到可以在

水平面移动的小推车组成.

图4 3D车摆模型示意图

Fig.4 Schematic
 

view
 

of
 

a
 

3D
 

car-pendulum

为了简化模型,暂不考虑车轮的非完整约束情况.使
用x∈ℝ表示小车在参考坐标系中沿e1 方向的位移,

y∈ℝ表示小车在参考坐标系中沿e2 方向的位移,

R∈SO(3)表示从体坐标系O'-E1E2E3 到惯性参考坐

标系的旋转矩阵,ω 表示摆在体坐标系下的角速度,ρ
表示在体坐标系下摆的质心到摆质量元的矢量,ρc 表

示体坐标系下摆的质心位置矢量,m 表示摆的质量,

M 表示车的质量,g 是重力加速度.系统的位形空间

是SO(3)×ℝ2,摆的动能可以表示为
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T=
1
2∫‖x·e1+y

·e2+R
·
(ρ+ρc)‖

2

dm(ρ)

=
1
2∫{tr[S(ω)(ρ+ρc)(ρ+ρc)TS(ω)T]+

x·2+y
·2+2x

·eT
1RS(ω)(ρ+ρc)+

2y
·eT
2RS(ω)(ρ+ρc)}dm(ρ) (36)

摆的非标准转动惯量Jd=∫(ρ+ρc)(ρ+ρc)Tdm,

摆的动能可以表示为

T=
1
2m(x·2+y

·2)+
1
2tr
[S(ω)JdS(ω)T]+

 mx·eT
1RS(ω)ρc+my

·eT
2RS(ω)ρc (37)

3D车摆系统的Lagrange函数为

L(R,ω,x·,y
·)=

1
2
(m+M)(x·2+y

·2)+

 12ω
TJω +mx·eT

1R(ω ×ρc)+

 my
·eT
2R(ω ×ρc)+mgeT

3Rρc (38)

通过Legendre变换可以得到正则动量为[8]

 
pω

px

py

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁 =

J mρ
^
cRTe1 mρ

^
cRTe2

mρ
^
cRTe1  T M+m 0

(mρ
^
cRTe2) 0 M+m

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁

ω

x·

y
·

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁

(39)
  

设小车和摆的质量M=m=1
 

kg,体坐标系下

质心位置矢量ρc= 0.25 0.25 1  Tm,转动惯

量J=
1.102

 

5 -0.062
 

5 -0.250
 

0
-0.062

 

5 1.102
 

5 -0.250
 

0
-0.250

 

0 -0.250
 

0 0.165
 

0

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁

 

kg·m2.

D车摆系统的初始状态,小车的位置x0=-0.125
 

m,

y0=-0.012
 

5
 

m,小车的速度x·0=0.525
 

m/s,y
·
0=

-0.012
 

5
 

m/s,摆的姿态R0=
1 0 0
0 0 -1
0 1 0

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁 ,摆的

角速度ω0= 0.1 0.2 5.0  T
 

rad/s.采用上述一

般格式的李群变分积分子和 Hamel变分积分子对

3D车摆系统使用 Matlab进行仿真计算,仿真步长

为5×10-3
 

s,仿真总时间为50
 

s.
图5和图6是使用Hamel变分积分算法计算

得到的车与摆的质心运动轨迹,其与文献[6]计算

得到的结果是一致的,可以说明 Hamel变分积分

方法计算3D车-摆系统的正确性.图7和图8描

述了车与摆质心位置的分量随时间变化情况,可以

看出车与摆做周期运动,与图5和图6的质心轨迹

图相对应.从图9和图10可以明显看出两种李群

算法在计算3D车-摆系统时,对系统的物理特性

(能量)保持得都很好,但是Hamel变分积分子相较

于一般格式的李群变分积分子更加精准.从图11可

知两种李群变分积分方法都能够很好地保持李群结

构,确保每次更新的姿态元素都在SO(3)群上.

图5 车的质心轨迹

Fig.5 Trajectory
 

of
 

the
 

car􀆶s
 

mass
 

center

图6 摆的质心轨迹

Fig.6 Trajectory
 

of
 

the
 

pendulum􀆶s
 

mass
 

center

图7 车的质心位移

Fig.7 Displacement
 

of
 

the
 

car􀆶s
 

center
 

of
 

mass

图8 摆的质心位移

Fig.8 Displacement
 

of
 

the
 

pendulum􀆶s
 

center
 

of
 

mass
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图9 3D车摆的能量变化曲线对比图

Fig.9 Comparison
 

of
 

the
 

3D
 

car-pendulum
 

system􀆶s
 

energy
 

variations

图10 3D车摆的能量误差曲线对比图

Fig.10 Comparison
 

of
 

the
 

3D
 

car-pendulum
 

system􀆶s
 

energy
 

error
 

curves

图11 3D车摆正交性误差曲线对比图

Fig.11 Comparison
 

of
 

the
 

3D
 

car-pendulum
 

system􀆶s
 

orthogonality
 

error
 

curves

4 结论
  

本文使用李群建模描述刚体的位形,由离散变

分原理得到了李群变分积分子和 Hamel变分积分

子.通过算例对比分析发现:一般格式的李群变分

积分子和 Hamel变分积分子具有保能量、保结构

的性质,但是 Hamel变分积分子的系统能量保持

特性优于一般格式的李群变分积分子.由于李群变

分积分子具有优越的性能,后续可进一步在模拟小

行星长时间运动演化问题中应用该算法.
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