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Abstract In the process of discretely solving mathematical models, traditional numerical methods pri-
marily focus on linear local numerical stability, making it difficult to accurately describe the system’s
dynamic characteristics over long periods. This paper uses Lie groups to describe the configuration of
rigid body motion and defines two variational formulas on Lie groups. By applying the discrete Hamilto-
nian variational principle and the discrete LLegendre transformation, we derive the general forms of Lie
group variational integrators and Hamel variational integrators for the Hamiltonian system of the rigid
body. We simulate the 3D car pendulum model using both of these Lie group variational integrator algo-
rithms and compare their performance in preserving the system’s group structure and energy. Simula-
tion results show that the Hamel variational integrator achieves higher accuracy than the general form of

the Lie group variational integrator and better preserves the system’s group structure and energy.
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