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摘要 本文应用预定时间控制理论,设计了基于正切函数、双曲正切函数、指数函数的三种自适应控制器和

参数估计律,以实现类Chen-Qi超混沌的驱动系统与同类型的参数未知的响应系统,在预定时间内达到同

步,完成理论证明.应用数值仿真,考察了同步误差曲线、控制输入曲线图等,对比了三种控制器的效果.结

果表明:当驱动系统为混沌运动时,设计的控制器能使响应系统在预定时间内同步到混沌运动,四个状态的

同步误差收敛时间相差较小.当驱动系统为周期运动时,设计的控制器能使响应系统同步到周期运动,但四

个状态的同步误差收敛时间相差较大.其根本原因是三次非线性项带来的不平衡、不匹配.同时也表明:基

于正切函数的自适应控制器和参数校正律,相比其余两种控制器和参数自适应律,对状态初值和系统参数

有更大的适应范围,普适性更好.
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Abstract Appling
 

pre-defined-time
 

stability
 

theory,
 

three
 

controllers
 

were
 

designed
 

to
 

achieve
 

synchro-
nization

 

between
 

Chen-Qi-like
 

four-dimension
 

hyper-chaotic
 

driving
 

systems
 

and
 

response
 

systems
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with
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parameters
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or
 

exponential
 

function.
 

Theoretical
 

proofs
 

were
 

provided.
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with
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time
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diagrams
 

and
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error
 

curves
 

via
 

numerical
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The
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results
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and
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thus
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a
 

better
 

universality.
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引言
  

类Chen-Qi四维系统是一种典型的非线性系

统,它在不同的参数组合或初值条件下,可产生混

沌运动、周期运动等[1-4].在两个同类型的类Chen-
Qi四维系统的同步控制研究中,若系统参数未知,

通常采用自适应控制器[2-6].依据Lyapunov-Kra-
sovsk泛函理论设计的渐近稳定控制器,仅能实现

渐近同步,同步误差需要很长的时间才能收敛到

0.借助有限时间稳定理论[3,7,8],设计自适应控制

器和参数估计律,但有限时间内同步误差趋近为0
的效果,仍然与系统的状态初值有关,也与驱动系

统的运动状态有关:主系统为周期运动状态时,有
限时间内同步误差趋近为0的效果较好;驱动系统

为混沌运动时,有限时间内同步误差趋近为0的效

果较差,主要是含三次非线性项的状态的同步误差

的收敛状况较差[3].
采用双幂函数积分技术设计固定时间收敛的

自适应控制器和参数估计律[4,9,10],以实现两个同

类型的类 Chen-Qi四维混沌系统的固定时间同

步[4].但固定时间内同步误差趋近为0的效果,仍
然与驱动系统的运动状态有关:驱动系统为混沌运

动状态时,固定时间内同步误差趋近为0的效果较

好;驱动系统为周期运动时,固定时间内同步误差

趋近为0的效果较差,也是因为含有三次非线性项

的状态的同步误差的收敛状况较差[4].
  

为解决该问题,使得类Chen-Qi四维系统的同

步误差在固定时间内收敛到0,本文借助预定时间

控制理论[11-20],设计了基于正切函数、双曲正切函

数、指数函数的三种自适应控制器和参数自适应校

正律,以实现两个同类型系统的预定时间同步,进
行了理论证明,并用数值仿真考察了它的效果.

1 四维混沌系统的预定时间同步
 

类Chen-Qi驱动系统非线性方程如式(1)
 [2-4]:

dx1

dt =a(y1-x1)+y1z1

dy1

dt =(c-a)x1+cy1-x1z1

dz1
dt =x1

2-y1z1-bz1-w1

dw1

dt =x1y1z1-x1z1-dw1

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁
􀪁􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(1)

其中a、b、c、d 为正的常数,是驱动系统的未知参

数;x1、y1、z1、w1 为状态变量;x10、y10、z10、w10 为

初值.
    

参照文献[2-4],取初值x10、y10、z10、w10 分别

为0.1、-0.2、-0.5、0.3;取a=37,b=3,d=38.
根据分岔图,当c=20.5时,解为定态运动;当c=
22.5、24.5、26.5、26.28时,解为不同形态的周期

运动.当c=26时,解为混沌运动;当c=36时,解
又变为周期运动.

   

同类型的响应系统如式(2)
 [2-4]:

dx2

dt =a2(y2-x2)+y2z2+u1

dy2

dt = c2-a2  x2+c2y2-x2z2+u2

dz2
dt =x2

2-y2z2-b2z2-w2+u3

dw2

dt =x2y2z2-x2z2-d2w2+u4

􀮠

􀮢

􀮡

􀪁
􀪁
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􀪁
􀪁􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

 

(2)

其中a2、b2、c2、d2 为响应系统的需要估计的未知

参数;u1、u2、u3、u4 是待设计的同步控制器;x2、

y2、z2、w2 为状态变量;x20、y20、z20、w20 为系统

(2)的初值.
    

误差系统为式(3)
 [2-4]:

de1
dt =a~(y2-x2)+a(e2-e1)+e2e3+

 e2z1+e3y1+u1

de2
dt =(c~ -a~)x2+(c-a)e1+c~y2+

 ce2-e1e3-e1z1-e3x1+u2

de3
dt =e21+2e1x1-e2e3-e2z1-e3y1-

 b
~
z2-be3-e4+u3

de4
dt =e1e2e3+x1e2e3+y1e1e3+z1e1e2+

 x1y1e3+x1z1e2+y1z1e1-z1e1-

 x1e3-e1e3-d
~
w2-de4+u4

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
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􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

(3)

其中e1=x2-x1,e2=y2-y1,e3=z2-z1,e4=w2

-w1;a~=a2-a,b
~
=b2-b,c~=c2-c,d

~
=d2-d.

下面,先给出几个必要的定义和引理.
定义1[11,12]: 如果存在预先指定的正常数Tc>
0,使得lim

t→TCC
|ei|=0,且∀t>TCC 有|ei|=0,其中

i=1,2,3,4.则称非线性系统(1)和(2)在TCC 内实

现了预定时间同步.
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引理1[12-14]: 对非线性系统x·=f[x(t)],x∈
Rn,考虑候选Lyapunov函数V(x),若满足:

d
dtV

(x)=V
·
(t)≤-

π
θTCC

(V1+θ/2+V1-θ/2)

(4)

其中V0=V(t=0)≥0,V0 为V(x)的初值;常数θ满

足0<θ<1,常数TCC 称为预定时间.则系统x·=

f[x(t)],x∈Rn 在预定时间TCC 内全局稳定.
    

进而有:

T ≤TCC×
2
πarctan

(Vθ/2
0 ) (5)

其中T 为V(x)实际收敛到0的时间.
  

将有界函数arctan(·)换成tanh(·),可得引

理2.
引理2: 对非线性系统x·=f[x(t)],x∈Rn,考
虑候选Lyapunov函数V(x),若满足:

V
·
(t)≤-

1
θTCC

[exp(Vθ/2)+1]2

exp(Vθ/2) V1-θ/2 (6)

其中V0=V(t=0)≥0,V0 为V(x)的初值;常数θ
满足0<θ<1,常数TCC 称为预定时间.则系统x·

=f[x(t)],x∈Rn 在预定时间TCC 内全局稳定.
    

进而有:

T ≤TCC×tanh(Vθ/2
0 ) (7)

引理3[15-17]: 对非线性系统x·=f[x(t)],x∈
Rn,考虑候选Lyapunov函数V(x),若满足:

  

V
·
(t)=-

1
θTCC

exp(Vθ)V1-θ (8)

其中V0=V(t=0)≥0,V0 为V(x)的初值;常数θ
满足0<θ≤1,常数TCC>0称为预定时间.则系统

x·=f[x(t)],x∈Rn 在预定时间TCC 内全局稳定.
      

进而有:

T=TCC× 1-exp(-Vθ
0)  (9)

  

控制目标是构造控制器和参数估计校正律,使
得驱动系统(1)和响应系统(2)的状态达到预定时

间同步.

1.1 基于正切函数的预定时间同步

定理1: 构造自适应控制器和参数估计校正律如

式(10)、式(11):

u1=ae1-e3y1-
πe1
2ρTc

(V
ρ
2 +V

-ρ
2)

u2=-ce1-ce2+e3x1-
πe2
2ρTc

(V
ρ
2 +V

-ρ
2)

u3=-e21-2e1x1+e2e3+e2z1+e3y1+

 be3+e4-
πe3
2ρTc

(V
ρ
2 +V

-ρ
2)

u4=-e1e2e3-x1e2e3-y1e1e3-z1e1e2-
 x1y1e3-x1z1e2-y1z1e1+z1e1+

 x1e3+e1e3+de4-
πe4
2ρTc

V
ρ
2 +V

-ρ
2  

 

(10)

 

a·2= -(y2-x2)e1+x2e2-
πa~

2ρTc
V

ρ
2 +V

-ρ
2  

b
·

2=z2e3-
πb

~

2ρTc
V

ρ
2 +V

-ρ
2  

c·2=-x2e2-y2e2-
πc~

2ρTc
V

ρ
2 +V

-ρ
2  

d
·

2=w2e4-
πd

~

2ρTc
V

ρ
2 +V

-ρ
2  

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(11)

V(t)=
1
2
(e21+e22+e23+e24+a~2+b

~2+c~2+d
~2)

(12)

其中常数0<ρ<1,常数Tc>0为预定时间参数.
则在控制器(10)和参数估计校正律(11)作用下,驱
动系统(1)和响应系统(2)的状态可实现预定时间

同步.
证明: 对误差系统(3),试取Lyapunov函数

为式(12),则V(t)是正定的、径向无界的、可微的

函数,且V(t0)≥0.
    

V(t)沿着轨迹(3)的导数为:

 V
·
=e1e

·
1+e2e

·
2+e3e

·
3+e4e

·
4+a~a~

·

+b
~
b
~
·

+c~c~
·

+d
~
d
~
·

(13)

将式(10)、式(11)、式(12)代入式(13),计算后,有:

V
·
=e1e

·
1+e2e

·
2+e3e

·
3+e4e

·
4+a~a~

·

+b
~
b
~
·

+c~c~
·

+d
~
d
~
·

=-
π
2ρTc

(V
ρ
2 +V

-ρ
2)(e21+e22+e23+e24+

a
~
2+b

~
2+c

~
2+d

~
2)

= -
π
2ρTc

(V
ρ
2 +V

-ρ
2)(2V)≤-

π
ρTc
(V
1+ρ
2 +V

1-ρ
2)

由引理1可得:驱动系统(1)和响应系统(2)的

状态可实现预定时间同步,同步时间T1 为:

T1 ≤Tc×
2
πarctan

(Vρ/2
0 )<Tc (14)

证毕.
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1.2 基于双曲正切函数的预定时间同步

定理2: 构造自适应控制器和参数估计校正律如

式(15)、式(16):
    

u1=ae1-e3y1-
e1
2ρTc

W(ρ)

u2=-ce1-ce2+e3x1-
e2
2ρTc

W(ρ)

u3=-e21-2e1x1+e2e3+e2z1+

 e3y1+be3+e4-
e3
2ρTc

W(ρ)

u4=-e1e2e3-x1e2e3-y1e1e3-
 z1e1e2-x1y1e3-x1z1e2-y1z1e1+

 z1e1+x1e3+e1e3+de4-
e4
2ρTc

W(ρ)

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

(15)

a·2= -(y2-x2)e1+x2e2-
a~

2ρTc
W(ρ)

b
·

2=z2e3-
b~

2ρTc
W(ρ)

c·2=-x2e2-y2e2-
c~

2ρTc
W(ρ)

d
·

2=w2e4-
d~

2ρTc
W(ρ)

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(16)

W(ρ)=
[exp(Vρ/2)+1]2

exp(Vρ/2) V-ρ/2 (17)

其中常数0<ρ<1,常数Tc>0为预定时间参数,V
为式(12).则在控制器(15)和参数估计校正律(16)

作用下,驱动系统(1)和响应系统(2)的状态可实现

预定时间同步.
证明: 对误差系统(3),试取Lyapunov函数

为式(12),则V(t)是正定的、径向无界的、可微的

函数,且V(t0)≥0.
V(t)沿着轨迹(3)的导数为式(13),将式(15)、

式(16)、式(17)、式(12)代入式(13),计算后,有:

V
·
=e1e

·
1+e2e

·
2+e3e

·
3+e4e

·
4+a~a~

·

+b
~
b
~
·

+c~c~
·

+d
~
d
~
·

= -
1
2ρTc

W(ρ)(e12+e22+e23+e24+a
~2+b

~2+c~2+d
~2)

= -
1
2ρTc

W(ρ)(2V)≤-
1

ρTc

[exp(V
ρ
2)+1]2

exp(V
ρ
2)

V
1-ρ
2  

 由引理2可得:驱动系统(1)和响应系统(2)的状

态可实现预定时间同步,同步时间T2 为:

T2 ≤Tc×tanh(V0
ρ/2)<Tc (18)

证毕.

1.3 基于指数函数的预定时间同步

定理3: 构造自适应控制器和参数估计校正律如

式(19)、式(20):

u1=ae1-e3y1-
e1
2ρTCC

exp(Vρ)V-ρ

u2=-ce1-ce2+e3x1-
e2
2ρTCC

exp(Vρ)V-ρ

u3=-e21-2e1x1+e2e3+e2z1+e3y1+

 be3+e4-
e3
2ρTCC

exp(Vρ)V-ρ

u4=-e1e2e3-x1e2e3-y1e1e3-z1e1e2-
 x1y1e3-x1z1e2-y1z1e1+z1e1+

 x1e3+e1e3+de4-
e4
2ρTCC

exp(Vρ)V-ρ

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

(19)

a·2= -(y2-x2)e1+x2e2-
a~

2ρTc
exp(Vρ)V-ρ

b
·

2=z2e3-
b~

2ρTc
exp(Vρ)V-ρ

c·2=-x2e2-y2e2-
a~

2ρTc
exp(Vρ)V-ρ

d
·

2=w2e4-
a~

2ρTc
exp(Vρ)V-ρ

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(20)

其中常数0<ρ<1,常数Tc>0为预定时间参数,V
为式(12).则在控制器(19)和参数估计校正律(20)

作用下,驱动系统(1)和响应系统(2)的状态可实现

预定时间同步.
证明: 对误差系统(3),试取Lyapunov函数

为式(12),则V(t)是正定的、径向无界的、可微的

函数,且V(t0)≥0.
V(t)沿着轨迹(3)的导数为 式(13),将 式

(19)、式(20)、式(12)代入式(13),计算后,有:

V
·
=e1e

·
1+e2e

·
2+e3e

·
3+e4e

·
4+a~a~

·

+b
~
b
~
·

+c~c~
·

+d
~
d
~
·

= -
1

2ρTCC
exp(Vρ)V-ρ(e21+e22+e23+e24+a~2+

  b
~2+c~2+d

~2)

= -
1

2ρTCC
exp(Vρ)V-ρ(2V)≤-

1
ρTCC

exp(Vρ)V1-ρ

由引理3可得:驱动系统(1)和响应系统(2)的
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状态可实现预定时间同步,同步时间T3 为:

T3 ≤TCC×[1-exp(-Vρ
0)] (21)

证毕.

2 数值仿真
  

数值仿真条件与文献[4]相同,仿真结果如表

1所示.
  

表1中初值1为:系统(1)初值x10、y10、z10、

w10 分别取-10.1、20.2、-8.5、-9.3;系统(2)初
值x20、y20、z20、w20 分别取1、-1、-7.5、3.5;

  

表1中初值2为:系统(1)初值x10、y10、z10、

w10 分别取-0.1、0.2、-0.5、0.3;系统(2)
 

初值

x20、y20、z20、w20 分别取为1、-1、0.5、-0.5;
  

混沌运动时:取参数a=37,b=3,c=26,d=
38;参 数 a2(0)=30,b2(0)=4,c2(0)=25,

d2(0)=40;
  

周期运动时:取参数a=37,b=3,c=36,d=
38;参 数 a2(0)=30,b2(0)=4,c2(0)=25,

d2(0)=40.
表1中收敛时间带*的数值为固定时间自适

应控制的仿真结果[4].

表1 仿真结果汇总

Table
 

1 Summary
 

of
 

simulation
 

results

序号
运动
模式

初值

ρ,TCC

e1,e2,e3
收敛时间/s

e4 收敛时间/s

例1
混沌

c=26

初值1
ρ=0.324

 

0
TCC=0.224

 

7

0.224
 

7*

0.172
 

8(1)
0.222

 

4(2)
0.224

 

5(3)

0.3*

0.23(1)
0.24(2)
0.27(3)

例2
周期

c=36

初值1
ρ=0.324

 

0
TCC=0.224

 

7

0.224
 

7*

0.173
 

9(1)
0.222

 

7
 

(2)

1.5*

1.6(1)
1.8(2)

例3
混沌

c=26

初值2
ρ=0.324

 

0
TCC=0.224

 

7

0.224
 

7*

0.172
 

8(1)
0.211

 

0(2)
0.213

 

5(3)

0.224
 

7*

0.4(1)
0.211

 

0(2)
0.213

 

5(3)

例4
周期

c=36

初值2
ρ=0.324

 

0
TCC=0.224

 

7

0.224
 

7*

0.160
 

4
 

(1)
0.217

 

7
 

(2)

1.5*

3.0
 

(1)
3.2

 

(2)

例1: 取预定同步时间 TCC=0.2247
 

s,取

ρ=0.324
 

0,取初值1,取混沌运动时的系统常数,

根据定理1,由式(5)算得T1≤0.172
 

8
 

s.用 Mat-
lab编写程序,调用ode45函数进行计算,得两个系

统的状态变量的同步误差的情况如图1(a)所示、

控制输入的情况如图1(b)所示.然后改变ρ,经试

验0.000
 

1≤ρ≤0.999
 

9程序可行.

同理,根据定理2算法,由式(7)算得 T2≤
0.222

 

4
 

s.用Matlab编写程序计算得状态变量的同

步误差情况和控制输入情况,分别如图1(c)、(d)所
示.经试验,此时0.000

 

1≤ρ≤0.701程序可行.
根据定理3算法,由式(9)算得T3≤0.224

 

5
 

s.
类似可得状态变量同步误差的情况和控制输入的

情况,分别如图1(e)、(f)所示.经试验0.000
 

1≤

ρ≤0.324
 

0程序可行.
由图1(a)、(c)、(e)可见:类Chen-Qi四维驱动

系统作混沌运动时,同步误差e1、e2、e3 衰减到0的

时间,与同步误差e4 衰减到0的时间,虽然略有差

别,但基本符合设计指定的同步时间.

(a) 同步误差曲线图(c=26混沌运动)
(a) Synchronization

 

error
 

curve
 

with
 

c=26

(b) 控制量曲线图(c=26混沌运动)
(b) Control

 

variable
 

curve
 

with
 

c=26

(c) 同步误差曲线图(c=26混沌运动)
(c) Synchronization

 

error
 

curve
 

with
 

c=26
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(d) 控制量曲线图(c=26混沌运动)
(d) Control

 

variable
 

curve
 

with
 

c=26

(e) 同步误差曲线图(c=26混沌运动)
(e) Synchronization

 

error
 

curve
 

with
 

c=26

(f) 控制量曲线图(c=26混沌运动)
(f) Control

 

variable
 

curve
 

with
 

c=26
图1 例1的仿真曲线图
Fig.1 Curve

 

of
 

example
 

1

由图1
 

(b)、(d)、(f)可见:从控制量的大小范

围来看,同等条件下,定理1基于正切函数的控制

器的取值范围最小,其参数ρ 的可取范围也最大.
因此,定理1的控制器的适用范围好于其他两种.

  

例2: 改取周期运动时的参数,即c=36,其余

参数同例1.由式(5)算得T1≤0.173
 

9
 

s.再仿真得

到两个系统的状态变量的同步误差的情况如图2(a)
所示,控制输入的情况如图2(b)所示.然后改变ρ,
经试验,此时0.000

 

1≤ρ≤0.999
 

9程序可行.
  

由图2
 

(a)可见:类Chen-Qi四维驱动系统做

周期运动时,同步误差e1、e2、e3 在约0.173
 

9
 

s基

本衰减到0,同步误差e4 在约1.6
 

s才衰减到0.

(a) 同步误差曲线图(c=36周期运动)
(a) Synchronization

 

error
 

curve
 

with
 

c=36

(b) 控制量曲线图(c=36周期运动)
(b) Control

 

variable
 

curve
 

with
 

c=36

(c) 同步误差曲线图(c=36周期运动)
(c) Synchronization

 

error
 

curve
 

with
 

c=36

(d) 控制量曲线图(c=36周期运动)
(d) Control

 

variable
 

curve
 

with
 

c=36
图2

 

 例2的仿真曲线图

Fig.2 Curve
 

of
 

example
 

2
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同理,根据定理2,由式(7)算得T2≤0.222
 

7
 

s.
用 Matlab编写程序计算,得到两个系统的状态变

量的同步误差的情况和控制输入的情况,分别如图

2(c)、(d)所示.经试验,此时0.001≤ρ≤0.450程

序可行.
  

由图2
 

(c)可见:类Chen-Qi四维驱动系统做

周期运动时,此时同步误差e1、e2、e3 在约0.222
 

7
 

s
基本衰减到0,同步误差e4 在约1.8

 

s才衰减到0.
根据定理3算法,用 Matlab编写程序计算,经

试验,0.000
 

1≤ρ≤0.270
 

0程序可行.
  

例3: 改取系统状态初值为初值2,其余参数

同例1.由式(5)算得T1≤0.172
 

8
 

s.用 Matlab编

写程序计算,得到两个系统的状态变量的同步误差

的情况如图3
 

(a)所示、控制输入的情况如图3
 

(b)

所示.然后改变ρ,经试验,此时0.000
 

1≤ρ≤
0.999

 

9程序可行.
  

由图3
 

(a)可见:类Chen-Qi四维驱动系统作

混沌运动时,e1、e2、e3 在约0.1728
 

s基本衰减到

0,误差e4 在约0.4
 

s衰减到0.
  

同理,根据定理2算法,由式(7)算得 T2≤
0.211

 

0
 

s.用 Matlab编写程序算得两个系统的状

态变量的同步误差的情况和控制输入的情况,分别

(a) 状态初值2时的同步误差曲线(c=26混沌运动)
(a) Synchronization

 

error
 

with
 

c=26
 

and
 

2nd
 

initial
 

values

(b) 状态初值2时的控制量曲线图(c=26混沌运动)
(b) Control

 

variable
 

curve
 

with
 

c=26
 

and
 

2nd
 

initial
 

values

(c) 状态初值2时的同步误差曲线(c=26混沌运动)
(c) Synchronization

 

error
 

curve
 

with
 

c=26
 

and
 

2nd
 

initial
 

values

(d) 状态初值2时的控制量曲线图(c=26混沌运动)
(d) Control

 

variable
 

curve
 

with
 

c=26
 

and
 

2nd
 

initial
 

values

(e) 状态初值2时的同步误差曲线(c=26混沌运动)
(e) Synchronization

 

error
 

curve
 

with
 

c=26
 

and
 

2nd
 

initial
 

values

(f) 状态初值2时的控制量曲线图(c=26混沌运动)
(f) Control

 

variable
 

curve
 

with
 

c=26
 

and
 

2nd
 

initial
 

values
图3

 

 例3的仿真曲线图

Fig.3 Curve
 

of
 

example
 

3
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如图3(c)、(d)所示.此时,经试验,0.000
 

1≤ρ≤
0.999

 

7程序可行.
  

由图3
 

(c)可见:类Chen-Qi驱动系统作混沌

运动时,此时e1、e2、e3 和e4 在约0.211
 

0
 

s衰减到

0,与设计指定值相符.
根据定理3算法,由式(9)算得T3≤0.213

 

5
 

s.
类似可得两个系统的状态变量的同步误差的情况和

控制输入的情况,分别如图3(e)、3(f)所示.经试验,
此时0.000

 

1≤ρ≤0.599
 

8程序可行.
  

由图3
 

(e)可见:类Chen-Qi驱动系统作混沌

运动时,此时e1、e2、e3 和e4 在约0.213
 

5
 

s衰减到

0,与设计指定值相符.
 

例4: 改取系统状态初值为初值2,改取周期

运动时的系统参数,即c=36,其余参数同例1.
    

由定理1式(5)算得T3≤0.160
 

4
 

s,再仿真得

状态变量的同步误差的情况如图4
 

(a)所示、控制

输入的情况如图4
 

(b)所示.然后改变ρ,经试验0.
000

 

1≤ρ≤0.999
 

9程序可行.
  

由图4(a)可见:类Chen-Qi四维驱动系统做

周期运动时,同步误差e1、e2、e3 在约0.160
 

4
 

s基

本衰减到0,同步误差e4 在约3.0
 

s才衰减到0,二
者差异较大.

  

同理,根据定理2算法,由式(7)算得 T2≤
0.217

 

7
 

s.用 Matlab编写程序算得两个系统的状

态变量的同步误差的情况和控制输入的情况,分别

如图4(c)、(d)所示.此时,经试验,0.001≤ρ≤
0.434程序可行.

  

由图4(c)可见:类Chen-Qi四维驱动系统做

周期运动时,同步误差e1、e2、e3 在约0.217
 

7
 

s基

本衰减到0,同步误差e4 在约3.2
 

s才衰减到0,二
者差异较大.

  

根据定理3算法,用 Matlab编写程序,类似可

得两个系统的状态变量的同步误差的情况和控制

(a) 不同状态初值时的同步误差曲线(c=36周期运动)
(a) Synchronization

 

error
 

with
 

c=36
 

and
 

2nd
 

initial
 

values

(b) 状态初值2时的控制量曲线图(c=36周期运动)
(b) Control

 

variable
 

curve
 

with
 

c=36
 

and
 

2nd
 

initial
 

values

(c) 状态初值2时的同步误差曲线(c=36周期运动)
(c) Synchronization

 

error
 

with
 

c=36
 

and
 

2nd
 

initial
 

values

(d) 状态初值2时的控制量曲线图(c=36周期运动)
(d) Control

 

variable
 

curve
 

with
 

c=36
 

and
 

2nd
 

initial
 

values
图4

 

 例4的仿真曲线图

Fig.4 Curve
 

of
 

example
 

4

输入的情况.经试验,此时0.001≤ρ≤0.280程序

可行.
  

综上,将仿真结果列表如表1.
  

可见:驱动系统做周期运动时,同步误差e1、

e2、e3 的收敛时间的大小,与同步误差e4 的收敛时

间的大小,相差较大.驱动系统做混沌运动时,同步

误差e1、e2、e3 的收敛时间,与同步误差e4 的收敛

时间,相差较小.这一现象与固定时间自适应同步

控制的状况相似.即:当类Chen-Qi驱动系统处于

周期运动时,只有同步误差e1、e2、e3 的收敛时间

数值符合预定时间稳定理论的规律,而同步误差

09
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e4 的收敛时间数值不符合.其原因是e1、e2、e3 只

存在二次非线性,e4 存在三次非线性项,从而产生

不平衡、不匹配,进而导致误差收敛情况的差异.这
是系统本身造成的.

3 结论
  

对两个类Chen-Qi四维超混沌系统的同步控

制问题,由Lyapunov稳定性理论设计的渐近稳定

自适应控制器和参数估计律,仅能实现渐近同步控

制.应用有限时间稳定理论,同步误差的收敛时间

又与初始状态值有关,当初始状态偏离平衡点无穷

远时,同步误差的收敛时间为无穷大.应用固定时

间稳定理论,同步误差的收敛时间又与系统的参数

有关,当驱动系统作混沌运动时,同步误差的收敛

时间数值基本一致;当驱动系统做周期运动时,同
步误差的收敛时间数值差别较大.为解决这一问

题,本文应用预定时间控制理论,设计了自适应控

制器和参数估计律,试图实现两个同类型的类

Chen-Qi四维系统的的预定时间同步,完成了理论

证明,并用数值仿真考察了它的效果.
  

数值计算的结果表明:同步误差在预定时间内

收敛到0的效果,与驱动系统参数c有关.当驱动

系统作混沌运动时,同步误差的收敛时间的数值差

别较小.当驱动系统做周期运动时,由于e4 存在三

次非线性项,与e1、e2、e3 的收敛情况相比,e4 的收

敛速度较慢,收敛时间的数值差别较大.这一现象

与固定时间自适应同步控制的状况相似[4].这是系

统本身的不平衡、不匹配导致的.
  

如何改进算法,消除这种不平衡,使得参数自

适应过程中,驱动系统处于混沌运动或周期运动

时,四个状态变量的同步误差的收敛时间的数值都

趋于一致,这有待深入研究.例如,采用高阶滑模控

制或分数阶控制器[14,18-20],或者将混沌系统转化为

积分链形式,从而应用反演控制、或基于时基发生

器的滑模控制、或基于RBF神经网络的自适应滑

模控制[21-23]
 

,或者应用其他的控制方法[24]等.
本文的研究还表明,基于正切函数的自适应控

制器和参数校正律,当0.000
 

1≤ρ≤0.999
 

9时都

可适用,相比基于双曲正切函数、基于指数函数的

自适应控制器和参数自适应估计律,这意味者它对

状态初值和系统参数有更大的适应范围,普适性更

好.本文的研究有助于加深理解类Chen-Qi系统的

自适应同步控制.
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