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Abstract Gap junctions play an important role in the transmission of information between neurons, the
development of neural circuits, and the understanding of the working mechanism of the nervous system.
The direct coupling between neurons connected by gap junctions may contribute to the synchronization of
neuronal firing and the emergence of sharp wave-ripples(SWR), which affect brain functions such as
memory consolidation. Because gap junctions are so few in the mature brain, they have been ignored in
earlier studies. Considering the heterogeneous characteristics of excitatory and inhibitory neurons, it is
unclear whether gap junctions in different neuronal types can provide a corresponding compensatory
mechanism for SWR in abnormal networks. In order to explore the above problems, a network of neu-
rons in CA1l region of hippocampus with introduction of gap junctions was constructed, which consisted
pyramidal cells(PC) , parvalbumin-positive basket cells(PV " BC), and axon-axonic cells(AAC). The re-

sults show that when the chemical synapses in CA1l are weakened and cannot generate SWR synchronous
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discharge, gap junctions in pyramidal cells and parvalbumin-positive basket cells can promote SWR. The

SWR compensation was most effective when gap junctions in pyramidal neurons and in both types of

neurons were present.
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