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Dynamic Modeling of Planar Articulated Multi-Rigid Body Systems

Based on Data Drive

Ai Zhihao Wang Kanghao Liu Xiaofeng'
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Abstract Dynamic models serve as effective tools for simulating physical systems, facilitating a deeper
understanding of the operational principles governing systems. They provide theoretical underpinnings
for prediction, optimization, and control system development. In recent years, data-driven approaches
for dynamic modeling have garnered widespread attention in academia. While significant progress has
been made, there remain limitations. This paper delves into the data-driven modeling of planar articula-
ted multibody systems and proposes an improved neural network framework, termed Topological La-
grangian Neural Network (TLNN), building upon the foundation of lLagrangian Neural Networks
(LNN). Compared to LNN, TLNN leverages topological information embedded within multibody sys-
tems, enhancing the learning performance of neural networks. Prediction results demonstrate that
TLNN establishes higher-precision dynamic proxy models for articulated multibody dynamics compared
to LNN, Hamiltonian Neural Networks (HNN), and Neural Ordinary Differential Equations (NODE)
when trained on the same dataset. Furthermore, this paper discusses the generalized coordinate selection
issue in the data-driven modeling process. Both training and prediction results indicate that utilizing rigid
body absolute angles for modeling yields dynamic proxy models with higher precision compared to

modeling based on joint relative angles in data-driven modeling of articulated multibody systems.
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