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摘要 动力学模型是模拟物理系统的一种有效工具,能够帮助人们深入理解物理系统的运行规律,为物理

系统的预测、优化设计以及控制系统的开发提供理论支持.近年来,基于数据驱动的动力学建模方法引起了

学界的广泛关注.已有研究虽然取得了一定成果,但仍存在一些不足之处.本文深入研究了基于数据驱动的

平面铰接多刚体系统动力学建模问题,并在拉格朗日神经网络(LNN)的基础上提出了一种改进的数据驱动

建模方法———拓扑拉格朗日神经网络(TLNN).相较于LNN,TLNN通过嵌入多体系统的拓扑信息,实现了

神经网络学习性能的提高.预测结果显示,使用相同训练数据集,相较LNN、哈密顿神经网络(HNN)以及神

经常微分方程(NODE)三种数据驱动建模方法,TLNN可以建立精度更高的铰接多刚体动力学代理模型.
另外,本文对数据驱动建模过程所涉及广义坐标选择问题进行讨论.训练和预测结果均显示,相较于选择关

节相对角度进行数据驱动建模,采用刚体绝对姿态角进行建模可以获得精度更高的动力学代理模型.

关键词 动力学建模, 铰接刚体, 拓扑拉格朗日神经网络, 拉格朗日力学
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Abstract Dynamic
 

models
 

serve
 

as
 

effective
 

tools
 

for
 

simulating
 

physical
 

systems,
 

facilitating
 

a
 

deeper
 

understanding
 

of
 

the
 

operational
 

principles
 

governing
 

systems.
 

They
 

provide
 

theoretical
 

underpinnings
 

for
 

prediction,
 

optimization,
 

and
 

control
 

system
 

development.
 

In
 

recent
 

years,
 

data-driven
 

approaches
 

for
 

dynamic
 

modeling
 

have
 

garnered
 

widespread
 

attention
 

in
 

academia.
 

While
 

significant
 

progress
 

has
 

been
 

made,
 

there
 

remain
 

limitations.
 

This
 

paper
 

delves
 

into
 

the
 

data-driven
 

modeling
 

of
 

planar
 

articula-
ted

 

multibody
 

systems
 

and
 

proposes
 

an
 

improved
 

neural
 

network
 

framework,
 

termed
 

Topological
 

La-
grangian

 

Neural
 

Network
 

(TLNN),
 

building
 

upon
 

the
 

foundation
 

of
 

Lagrangian
 

Neural
 

Networks
 

(LNN).
 

Compared
 

to
 

LNN,
 

TLNN
 

leverages
 

topological
 

information
 

embedded
 

within
 

multibody
 

sys-
tems,

 

enhancing
 

the
 

learning
 

performance
 

of
 

neural
 

networks.
 

Prediction
 

results
 

demonstrate
 

that
 

TLNN
 

establishes
 

higher-precision
 

dynamic
 

proxy
 

models
 

for
 

articulated
 

multibody
 

dynamics
 

compared
 

to
 

LNN,
 

Hamiltonian
 

Neural
 

Networks
 

(HNN),
 

and
 

Neural
 

Ordinary
 

Differential
 

Equations
 

(NODE)
 

when
 

trained
 

on
 

the
 

same
 

dataset.
 

Furthermore,
 

this
 

paper
 

discusses
 

the
 

generalized
 

coordinate
 

selection
 

issue
 

in
 

the
 

data-driven
 

modeling
 

process.
 

Both
 

training
 

and
 

prediction
 

results
 

indicate
 

that
 

utilizing
 

rigid
 

body
 

absolute
 

angles
 

for
 

modeling
 

yields
 

dynamic
 

proxy
 

models
 

with
 

higher
 

precision
 

compared
 

to
 

modeling
 

based
 

on
 

joint
 

relative
 

angles
 

in
 

data-driven
 

modeling
 

of
 

articulated
 

multibody
 

systems.
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引言
   

经过多年发展,神经网络已经广泛地应用于计

算机科学领域的研究中,在图像分类[1]、语音识

别[2]和自然语言处理[3]等问题的解决中取得了巨

大的突破和成功.然而,神经网络在处理机械系统

动力学建模等传统工程学科的问题时依然面临着

许多挑战.近年来,学者们通过将已知的先验物理

信息嵌入神经网络[4],改善神经网络对机械系统动

力学模型的学习能力.学术界将此类神经网络命名

为基于物理信息的神经网络[5].尽管基于物理信息

的神经网络在解决物理系统动力学数据驱动建模

问题上展现了巨大潜力,但其在建模精度上仍有很

多不足,尚不具备完成复杂物理系统的动力学建模

任务的能力,如常见的铰接多刚体机械系统.进一

步提升基于物理信息的神经网络的学习能力对于

将数据驱动技术应用于机械系统动力学建模问题

意义重大.
到目前为止,国外学者对基于数据驱动的机械

系统动力学建模问题进行了深入的研究,提出了一

些有效的机器学习方法.这些方法按原理不同可分

为:基于观测偏差的学习方法、基于引导偏差的学

习方法和基于学习偏差的学习方法[6].
观测偏差类方法是一种类似于纯数据驱动的

学习方法,通过构建蕴含物理特征的数据集,如机

械系统的运动轨迹数据或流场的图像数据,实现神

经网络学习性能的提升.Godwin等[7]提出基于图

网络的模拟器(graph
 

network-based
 

simulators,
 

GNS)框架,其使用图神经网络学习粒子的运动轨

迹以此预测流体系统未来的状态.Raissi等提出隐

藏流体力学(hidden
 

fluid
 

mechanics,
 

HFM)[8]方
法,其从流场图像中挖掘速度场和压力场的信息.

   

引导偏差类方法可视为神经网络方法与传统

建模方法的结合.通过设计特定的网络结构嵌入先

验物理定律,例如守恒定律、牛顿第二定律,进而提

升神经网络模型学习性能.在引导偏差类方法中,

哈密顿神经网 络(Hamiltonian
 

neural
 

network,
 

HNN)[9]和拉格朗日神经网络(Lagrangian
 

neural
 

network,
 

LNN)[10]是最具代表性的,它们利用微

分操作分别实现了哈密顿正则方程和第二类拉格

朗日方程的嵌入.基于这两种神经网络,Finzi等提

出了约束哈密顿网络(CHNN)和约束拉格朗日网

络(CLNN)[11].此种改进方法最大的不同是选用物

体的笛卡尔坐标作为数据驱动建模的广义变量,并
基于带拉格朗日乘子的第二类拉格朗日方程建立

系统的动力学模型.类似的,Bhatoo等基于图神经

网络方法对LNN和 HNN进行改进.他们提出的

方法分别称为拉格朗日图神经网络(LGNN)和哈

密顿图神经网络(HGNN)[12].相较之前的工作,

LGNN最大的改进是实现了系统拓扑关系的嵌

入.训练和预测结果显示,拓扑信息的嵌入有助于

网络学习性能的提升.
   

学习偏差类方法可视为一种基于多目标优化

思想的数据驱动方法,通过在训练过程中引入含有

物理信息的损失函数实现对网络优化方向的限制,

进而提升神经网络的学习能力.在学习偏差类方法

中,含有物理信息的损失函数一般被称为软约束.
Raissi等提出的物理信息神经网络(physics-in-
formed

 

neural
 

network,
 

PINN)[13]是此类型方法

的代表性工作,该网络使用来自控制方程的残差项

构造损失函数,实现将预测结果限制在可行解空间

内的目标.类似的,机械系统中遵循的守恒律,如能

量守恒定律、动量守恒定律,也可以作为软约束,提
升数据驱动方法的建模精度.例如,Hermann等将

Noether定理嵌入神经网络中,构造软约束,以此

提升了神经网络的学习能力[14].在 Kasim等提出

的运动常数网络(constants
 

of
 

motion
 

network,
 

COMET)[15]中,其利用 QR分解及正则化方法挖

掘学习对象所蕴含的运动常数,如物体长度、质量

等,并以此构造软约束,提升数据驱动模型的学习

能力.
   

在上述介绍的三类数据驱动方法中,虽然以

LNN和HNN为代表的基于引导偏差的方法建模

性能更优,更具应用潜力[16-20],但是,该类型方法仍

有明显不足,主要表现为对二自由度及以上的机械

系统动力学行为的预测精度较低.由LNN发展而

来的LGNN,尝试通过嵌入系统的拓扑关系提升

建模精度.虽然测试结果显示LGNN的建模精度
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有了显著提升,但由于该方法需要借助精确测量的

几何约束,实现拓扑关系的嵌入,这大大降低方法

的通用性.另外,相较LNN建模所使用物体姿态

角,LGNN建模所采用物体的笛卡尔坐标存在以

下缺点:(1)
 

需要测量的信息量大且精确测量难度

大;(2)
 

建模过程需要引入约束方程,增加了计算

复杂度.
 

为克服当前建模方法的不足,本文针对平面铰

接多刚体数据驱动建模,提出了一种新的神经网

络,其被命名为拓扑拉格朗日神经网络(topologi-

cal
 

Lagrangian
 

neural
 

network,TLNN).与LGNN
不同,TLNN仍采用物体的绝对姿态角进行数据

驱动建模,并利用神经网络的微分运算实现系统拓

扑关系的嵌人.由于嵌人过程无需任何需要测量的

先验信息,因此TLNN相较LGNN具有更好的通

用性.另外,本文对数据驱动建模蕴含的广义坐标

选择问题进行了研究.

1 拓扑拉格朗日神经网络
   

针对基于数据驱动的平面铰接多刚体系统动

力学建模问题,本文在拉格朗日神经网络(LNN)

基础之上提出了一种改进的数据驱动建模方法—

拓扑拉格朗日神经网络方法(TLNN).相较LNN,

TLNN最大的不同是利用神经网络的自动微分机

制实现了多体系统拓扑信息的嵌入,提升了动力学

建模能力.为更清晰地介绍TLNN的网络结构,本
节首先简要回顾了LNN,然后再详细介绍TLNN
的网络细节.

1.1 拉格朗日神经网络回顾(LNN)
   

拉格朗日神经网络是一种基于物理信息的数

据驱动的动力学建模方法,其在建模准确性、训练

速度等方面均优于纯数据驱动的建模方法.如图1
所示,LNN由能量转化层和微分层两部组成,其中

能量转化层为一个多层感知器(multilayer
 

percep-
tron,

 

MLP),它的输入为物理系统的广义坐标q=
[q1,q2,…,qn]T ∈ Rn 和 广 义 速 度 q

·
=

[q
·
1,q

·
2,…,q

·
n]T ∈Rn,输出为系统拉格朗日量的

估计L
^
.微分层的输入是L

^,利用神经网络的自动

微分功能建立第二类拉格朗日方程,进而获得对系

统广义加速的估计q
··.

图1 LNN的结构
Fig.1 The

 

Structure
 

of
 

LNN

估计加速度q
··̂的计算过程如下:根据第二类拉

格朗日方程,可得

d
dt
∂L
∂q
· -
∂L
∂q=Q (1)

其中,L=T-V,T 为系统总动能,V 为系统总势

能,Q∈Rn 为广义力向量.
展开式(1),可得

M(q)q
··
+h(q,q

·)-f(q)=Q (2)
其中,

M(q)=
∂2L
∂q
·2

(3)

h(q,q
·)=

∂2L
∂q∂q

·q
· (4)

f(q)=
∂L
∂q

(5)

式中,M 是广义质量矩阵,h 是与广义速度有关的

广义惯性力,f 是广义重力.公式(2)为系统的动力

学方程.
公式(2)等式两端同乘广义质量阵的逆矩阵,

可得

q
··
=
∂2L
∂q
·2  

-1 ∂L
∂q-

∂2L
∂q∂q

·q
·
+Q  (6)

  

将公式(6)中的L 替换为对其的估计L
^,便可

获得对系统广义加速的估计q
··̂,其表达式为:

q
··
=
∂2L

^

∂q
·2  

-1 ∂L
^

∂q-
∂2L

^

∂q∂q
·q
·
+Q  (7)

  

如图1所示,LNN的损失函数为:

Loss= q
··
-q
··̂

+Regularizationloss (8)
其中,Regularization

 

loss为对多层感知器(MLP)
权重参数的欧几里得范数,防止模型过拟合.
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1.2 拓扑拉格朗日神经网络(TLNN)
   

LNN虽然具有远超传统纯数据驱动方法的建

模能力,但其建模精度仍有很大的提升空间.引入

更多的先验物理信息是提升其建模精度的有效途

径之一.LGNN是LNN的重要改进形式之一,其

设计者利用图神经网络的特殊结构完成了拓扑信

息的嵌入,有效提升了神经网络代理模型对系统动

力学行为的预测能力.这一研究结果表明,拓扑信

息的嵌入对提升数据驱动方法的建模能力确实是

十分有帮助的.尽管如此,LGNN也有一些不足.
例如,在LGNN中,拓扑信息的嵌入需要引入几何

测量信息.如果在几何信息测量信息不准确的情况

下,拓扑信息的嵌入势必将起到反效果.如何在不

引入几何测量信息条件下,实现系统拓扑信息的嵌

入是一个值得深入探讨的问题.
在本文的研究中,我们在LNN基础之上,设

计了一种新的拓扑信息嵌入机制.本文将含有这种

新机制的网络命名为拓扑拉格朗日神经网络,该网

络的框架如图2所示.观察图2可知,TLNN由正

余弦层、能量转换层与微分层构成.正余弦层的作

用在于当网络输入的变量为广义坐标的角度信息

时,该层将会对输入信息进行坐标变换,因为在平

面铰接多刚体动力学系统的动能和势能表达式中,

广义坐标q都以正余弦的形式存在,所以将广义坐

标经过正余弦变换可以帮助神经网络的学习,可以

获得精度更高的代理模型,具体操作如下:

q⇒[sinq,cosq] (9)

图2 TLNN的结构

Fig.2 The
 

Structure
 

of
 

TLNN

与LNN不同,经过正余弦层变换后,TLNN
中能量转化层的输入将包含广义坐标的正余弦

sin_cos_q = [sin(q1),cos(q1),sin(q2),cos(q2)…,

sin(qn),cos(qn)]T∈Rn 和广义速度q
·
=[q

·
1,q

·
2,…,

q
·
n]T .

   

与LNN的能量转换层相比,TLNN中的能量

转化层不直接估计系统的拉格朗日量,而是变为估

计系统中每个物体的动能和势能.这有助于微分层

利用自动微分操作实现系统拓扑信息的嵌入.下

面,将对TLNN微分层的具体运算进行介绍.
   

根据拉格朗日量的定义,可得

L=∑Ti-∑Vi (10)
   

将上式代入公式(1),可得

d
dt
∂∑Ti

∂q
· -

∂∑Vi

∂q =Q (11)
   

上式经进一步简化,可得

∑
∂2Ti

∂q
·2q

··
+∑

∂2Ti

∂q∂q
·q
·
-∑

∂Vi

∂qq
·
=Q (12)

   

由于Ti 和Vi 只与系统中部分状态信息有

关,因此上式中求偏导运算可只对有关联信息进行

操作,对于无关的状态信息可直接取0.如果令系

统中每个物体的拓扑关系向量为Bi,其中Bi 为先

验知识,根据动力学系统中已知的刚体数量,刚体

与刚体之间的相对关系及邻接关系直接获得,其表

达式为:

Bi=[γ1
i,…,γn

i]T (13)

其中,

γj
i =

1,如果Ti 与qj 有关

0,如果Ti 与qj 无关
j=1,… ,n (14)

   

引入Bi 后,公式(12)可改写为:

 ∑
∂2Ti

∂Bi☉q
·  2

q
··
+∑

∂2Ti

∂Bi☉q
·  ∂Bi☉q

·  
q
·
+

 ∑
∂Ti

∂Bi☉q  -∑
∂Vi

∂Bi☉q  =Q (15)
   

式中,运算符号“☉”代表向量或矩阵之间的对应位

置元素相乘即Hadamard积.
   

上式经进一步变换,可得

q
··
= ∑

∂2Ti

∂(Bi☉q
·)2

􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

2

Q-∑
∂Ti

∂(Bi☉q
·)

􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 +
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 ∑
∂Vi

∂(Bi☉q)
-∑

∂2Ti

∂(Bi☉q)∂(Bi☉q
·)q
·􀭠

􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

(16)

将能量转化层对系统中每个物体动能的估计

T
^

i 和势能的估计V
^
i 代入公式(16),可得 TLNN

对系统广义加速度的估计q
··̂.

   

观察上述的计算过程可知,TLNN利用拓扑

关系向量Bi 实现了系统拓扑信息的嵌入.由于Bi

无需测量,因此不会将测量误差代入的数据驱动建

模过程中,影响建模精度.本文的第2节将会对

TLNN的性能进行全面评估.

2 仿真实验与结果
   

本节将使用TLNN、LNN、HNN和NODE四

种数据驱动方法建立多种平面铰接多刚体系统的

动力学代理模型,通过比较代理模型的精度,验证

TLNN方法性能的优越性.

2.1 仿真实验设置
   

本小节将以图3中的平面铰接多刚体系统为对

象,使用Matlab构建平面铰接多刚体系统的动力学

方程,再利用数值仿真生成数据驱动建模所需的数

据集.数据集生成过程如下:首先,对于每一个对象,

随机选择250组初始条件.初始条件包括系统运动

状态(q,q
·)和广义外力Q.然后,利用数值积分获得

系统状态在100
 

s内的变化,并以25
 

Hz的频率进行

采样,生成由50万个数据组成的数据集.训练过程,

该数据按7∶3的比例划分训练集和测试集,训练集

包含35万个数据,测试集包含15万个数据.本研究

所采用的硬件与软件配置如下:硬件配置:
 

64
 

GiB
系统内存,Intel(R)

 

Core(TM)
 

i9-14
 

900K
 

CPU
 

@
 

5.60
 

GHz,
 

Nvidia
 

Geforce
 

4080
 

GPU;软件配置:
 

Python-3.11.8,jax-0.2.24,
 

jaxlib-0.1.73,Cuda-
12.1,Cudnn-9.0.

图3 平面铰接多刚体系统

Fig.3 Planar
 

hinged
 

multi-rigid
 

body
 

system
 

2.2 TLNN建模性能评估
   

使用2.1节生成的数据集进行训练,我们可以

获得图3所列系统的动力学代理模型.本文将分别

使用代理模型与数学模型进行数值仿真,通过比较

仿真结果的差异,检验代理模型的精度,评估不同

数据驱动方法的建模能力.在评估环节,每个代理

模型与其对应的数学模型都会进行100次数值仿

真,这些仿真的初始条件是随机选择的,且包含在

训练集和测试集中.每次数值仿真生成的关节轨迹

曲线时长为10
 

s,采样频率为100
 

Hz.为便于讨论

分析,令基于代理模型生成的轨迹曲线为预测曲

线,基于数学模型生成的轨迹曲线为真实曲线.定
义每次数值仿真中代理模型预测误差为:

E(t)=‖z^(t)-z(t)‖2/‖z(t)‖2 (17)

其中,z^(t)=[q^(t);q
·̂(t)]为采样点的估计值,

z(t)=[q(t);q
·(t)]为采样点的真实值.本文采用

100次数值仿真获得的代理模型预测误差的中位

数曲线、95%置信区间曲线、5%置信区间曲线表征

代理模型的精度.
如图4所示,本文绘制了四种代理模型在100

 

次数值仿真中预测误差的中位数时历曲线,阴影区

域为预测误差的95%置信区间到5%置信区间.由
图4可知,随着系统自由度的增加,四种代理模型

的预测误差均呈现上升趋势.对于相同的动力学系

统而言,TLNN方法训练得到的代理模型预测误

差最小,精度最高,显著优于其他三种代理模型.
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图4 100组E(t)中位数的相对误差时历曲线

Fig.4 The
 

rollout
 

error
 

time
 

curve
 

of
 

100
 

groups
 

of
 

E(t)median
   

  本文针对如图5所示的四连杆系统,使用了不

同的数据驱动方法对四连杆系统建立了代理模型,
并且在未学习过的初始条件下对其进行仿真.其中

仿真实验的系统状态初值为 [θ,θ
·
]=[θ1,θ2,θ3,

θ4;θ
·

1,θ
·

2,θ
·

3,θ
·

4]=[-2.06,-0.08,0.12,-0.36;

-0.14,0.017,-0.019,0.095]T.其中,θ 表示四

连杆中各刚体的广义角度,单位为rad,θ
·

表示四连

杆中各刚体的广义角速度,单位为rad/s.关节驱动

力阵为Q=[Q1,Q2,Q3,Q4]=[0.05,0.05,0.05,

0.05]T,Q 表示为四连杆中各刚体关节上的广义

力,单位为N/m.
仿真结果如图6所示,基于TLNN的代理模

型可以更为准确预测关节角度的变化.相较基于

TLNN的代理模型,基于另外三种方法的代理模

型只能进行短期预测.当预测时间操作5
 

s后,预测

图5 四连杆系统示意图

Fig.5 Diagram
 

of
 

the
 

four
 

bar
 

linkage
 

system
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结果与真实值开始出现明显偏差,且偏差随着时间 的增加而增大.

图6 四连杆系统关节角度预测时程曲线和误差曲线

Fig.6 Time
 

curve
 

and
 

error
 

curve
 

of
 

each
 

joint
 

angle
 

prediction
 

for
 

four
 

bar
 

linkage
 

system
 

3 不同广义坐标的选择和讨论
   

拉格朗日力学对广义坐标的选择是多样的,没
有明确的限制.以平面铰接多刚体系统为例,建模

时常采用的广义坐标包括:物体质心的笛卡尔坐

标、铰接关节坐标、物体绝对姿态角等.不同的坐标

选择虽然会造成动力模型的数学表达式存在区别,

但不会影响模型的准确性.因此,研究人员可以根

据习惯和研究对象的特点选择不同的广义坐标进

行建模.然而,我们的研究结果表明,数据驱动建模

方法并不具备传统建模方法的特点.以本文的研究

对象,四种平面铰接多刚体为例,如果系统的广义

坐标由刚体的绝对姿态角变为关节角度
 

(如图7
所示),那么数据驱动代理模型的训练误差和预测

误差将明显提高.我们在使用神经网络进行训练时

保存了每一轮训练的训练损失,训练结果和预测性

能对比展示结果如图8所示.在两组不同的训练结

果曲线中可以发现,在平面铰接多刚体系统下,使
用关节角度为广义坐标表示的动力学方程相对于

使用刚体的绝对姿态角表示的动力学方程更容易

训练且训练损失的收敛值更低.

图7 两种不同广义坐标表示的系统
Fig.7 Two

 

different
 

generalized
 

coordinate
 

representation
 

systems

从图8展示的结果可以看出,基于不同广义坐

标建立的数据代理模型在预测精度和训练精度上

是有明显差异的.经过研究,认为导致这一现象的

主要原因是代理模型所学习的动力学模型数学表

达式存在明显的差异.以二连杆为例(如图9所

示),分别采用刚体绝对姿态角和关角度为广义坐

标,系统的动能表达式分别为:

Tabs=(J1q
·2
1+J2q

·2
2)/2+(m1l21q

·2
1)/8+

 [m2l21q
·2
1+m2l1l2q

·
1q
·
2cos(q1-q2)]/2

(18)
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Trel=[J1q
·2
1+J2(q

·
1+q

·
2]/2+(m1l21q

·2
1)/8+

 [m2l21q
·2
1+m2l1l2q

·
1(q

·
1+q

·
2)cos(q2)]/2

(19)

Vabs=-3m1gl1cos(q1)/2-m2gl2cos(q2)/2
(20)

Vrel=-3m1gl1cos(q1)/2-
 m2gl2cos(q1+q2)/2 (21)

其中,g 为重力加速度,m1、m2 分别为两杆件的质

量,l1、l2 分别为两杆件的长度,J1、J2 分别为两杆

件的转动惯量,广义坐标q=[q1,q2]T 和广义速度

图8 数据驱动代理模型的训练误差和预测误差

Fig.8 Train
 

loss
 

and
 

prediction
 

error
 

of
 

data-driven
 

agent
 

model

图9 平面二连杆系统

Fig.9 Planar
 

double
 

bar
 

linkage

q
·=[q

·
1,q

·
2]T,Tabs、Vabs 分别为刚体绝对角度法下

的系统动能和势能,Trel、Vrel分别为关节相对角度

法下的系统动能和势能.观察式(18)~(21)可以发

现,基于绝对姿态角的动能表达式和势能表达式更

为简单.从机器学习的角度来看,更简单的表达式

意味着更低的学习成本.在网络结构、网络参数相

同的情况下,学习对象简单无疑意味着代理模型具

有更高的精度.

4 结论与展望
   

本文对基于数据驱动的平面铰接多刚体系统

动力学建模问题进行研究,并在LNN基础之上提

出了一种改进的数据驱动建模方法—拓扑拉格朗

日神经网络(TLNN).相较已有数据驱动建模方

法,TLNN可以更好地从数据中挖掘出系统的动

力学特征.因此,由其训练的动力学代理模型拥有

更高的精度.数值仿真结果验证了这一点.另外,本
文通过研究发现:广义坐标的选择对动力学代理模

型精度有很大影响.仿真结果显示:如果广义坐标

对应的动力学模型拥有更简单的数学表示式,那么

其对应的数据驱动代理模型将会有更高的精度.
   

由于当前数据驱动方法实现动力学建模仍局

限在一些简单的理想算例下,且学习得到的动力学

方程仍有局限,当系统中物理参数发生变化时则需

重新学习模型.在今后的工作中,数据驱动的动力

学建模方法可以结合迁移学习等方法,并结合视觉

测量采集真实世界中的物理模型数据并实时或离

线地学习真实的物理模型并预测.
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