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摘要 基于二分量耦合 Hirota方程,研究了该方程的高阶孤子解并分析其动力学特性.利用Lax对和广义

Darboux变换,对该方程的特征函数进行泰勒展开,推导出 Hirota方程二阶、三阶孤子解的表达式.分情况

讨论谱参数λ的实部和虚部,选取不同的自由参数,通过数值模拟得到孤子间相互作用演化图;分析不同参

数对孤子振幅变化和传播方向的影响.结果表明,对参数的不同取值会影响孤子之间的相互作用以及传播

方向.
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引言
  

非线性科学起源于20世纪60年代,是研究非

线性现象共性的一门学科,孤子理论是非线性科学

的分支之一[1,2].一般情况下,孤子在相互碰撞后,

传播轨迹和速度能够保持不变.正因为孤子具有这

种特殊性质,在物理学[3]、光纤孤子通信[4]、生物科

学[5]和海洋科学[6]等领域中得到广泛的应用.光孤

子在光纤中生成,可作为信息传输的载体,构建了

光孤子通信[7].生物学中利用孤子分析了呼吸捕获

机制,玻色-爱因斯坦凝聚也发现了孤子解[8].目
前,孤子现象能够合理解释很多相关自然现象,因
此对孤子的研究具有重要意义.

随着学者们对于孤子解的深入研究,逐渐提出

一些经典方法,如逆散射方法[9]、Darboux变换

法[10,11]、Hirota双 线 性 方 法[12]、修 正 辅 助 方 程

法[13]、相似变换[14]等.本文采用广义 Darboux变

换[15],是在经典Darboux变换的基础上,通过引入

一个小参数,利用泰勒展开与极限思想得到广义

Darboux变换.主要思想是基于Lax对方程,构造

Darboux矩阵,选取零解作为种子解,得到Lax对

的特解,从而求出孤子解的迭代表达式.与经典

Darboux变换相比,广义Darboux变换只需要考虑

一个谱参数,很大程度简化了运算过程,提高了运

算效率.非线性薛定谔方程常用于研究孤子解,Hi-
rota方程是薛定谔方程的可积推广,也是分析孤子

解动力学特性的一个重要模型.
  

本文研究二分量耦合 Hirota方程,该方程可

用来模拟双折射光纤中两个超短光纤场的波的传

播[16,17],方程为

iq1,t+q1,xx +2(|q1|2+|q2|2)q1+iε(q1,xxx +

6|q1|2q1,x +3|q2|2q1,x +3q*
2q2,xq1)=0

iq2,t+q2,xx +2(|q1|2+|q2|2)q2+iε(q2,xxx +

6|q2|2q2,x +3|q1|2q2,x +3q*
1q1,xq2)=0

(1)

其中q1(x,t)、q2(x,t)表示两个复场函数,*为共

轭,x 为演化距离,t为演化时间,ε为实常数.
  

很多学者对方程(1)进行了研究,杨丹玉等[18]

利用Darboux变换得到该方程的亮-暗孤子;孙
文荣等[19]研究了该方程的高阶怪波,证明了在基

带调制不稳定性条件下可以激发怪波;Liu[20]通过

研究该方程的黎曼-希尔伯特问题获得了该方程

的渐近性;基于广义Darboux变换,Chai等[21]研究

了该方程的局域波,得到了呼吸子到孤子的转换;

Tasgal等[22]通过逆散射方法,构建了显式孤子解,

系统分析了线性耦合项,而关于该方程的孤子解问

题研究较少.本文利用广义Darboux变换得到方

程(1)的高阶孤子解迭代表达式,进一步分析其孤

子解动力学特性.

1 广义Darboux变换
  

方程(1)具有如下形式的Lax对方程

Φx =UΦ ,

Φt =VΦ=(V3λ3+V2λ2+V1λ+V0+cE)Φ
(2)

其中
 

U=

iλ q1 q2

-q*
1 -iλ 0

-q*
2 0 -iλ  ,

V3=

4iε 0 0
0 -4iε 0
0 0 -4iε  ,

V2=

2i 4εq1 4εq2

-4εq*
1 2i 0

-4εq*
2 0 2i  ,

V1 =2

-iε(|q1|2+|q2|2) -q1-iεq1,x -q2-iεq2,x

q*
1 -iεq*

1,x iε|q1|2 iεq*
1q2

q*
2 -iεq*

2,x iεq1q*
2 iε|q2|2  ,

V0=

v1+v2 v3 v4

-v*
3 -v1 v5

-v*
4 -v*

5 -v2
  ,

v1=i|q1|2-εq1,xq21+εq*
1,xq1,

v2=i|q2|2-εq2,xq*
2 +εq*

2,xq2,

v3=iq1,x -εq1,xx -2εq1(|q1|2+|q2|2),

v4=iq2,x -εq2,xx -2εq2(|q1|2+|q2|2),

v5=εq2,xq*
1 -εq*

1,xq2-iq*
1q2.

Φ=[φ(x,t),ϕ(x,t),χ(x,t)]T 为方程(1)的本征

波函数,λ为光谱参数,T为向量转置,*为共轭.方

程(2)可由相容性条件Ut-Vx+[U,V]得到.
  

Darboux矩阵满足

T[1]=λI-HΛ1H-1

其中
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H=

φ1 φ*
1 χ*

1

φ1 -φ*
1 0

χ1 0 -φ*
1

  ,Λ1=

λ1 0 0

0 λ*
1 0

0 0 λ*
1

  ,
I是3×3的单位矩阵,λ=λ1 为光谱参数,是一个

复常数,λ*
1 为λ1 的共轭复数.

  

假设方程(1)的种子解为q1[0]=q2[0]=0,
代入Lax对方程(2)中,得出与λ=λ1 和λ=λ3 对

应的基解矩阵

Φa[0]=ϕ

φ1[0]

ϕ1[0]

χ1[0]  =
h11eiλ(x+4βλ2t+2λt)

h21e-iλ(x+4βλ2t-2λt)

h31e-iλ(x+4βλ2t-2λt)  ,
Φb[0]=ϕ

φ2[0]

ϕ2[0]

χ2[0]  =
h12eiλ(x+4βλ2t+2λt)

h22e-iλ(x+4βλ2t-2λt)

h32e-iλ(x+4βλ2t-2λt)  .

(3)

其中hj1,hj2(j=1,2,3)是任意复参数.
  根据Darboux矩阵推导出经典Darboux变换:λ=λk,Φk =(φk,ϕk,χk)T,  (k=1,2…N),

ΦN[N -1]=T[N -1]T[N -2]…T[1]ΦN,

q1[N]=q1[0]+2i∑
N

k=1

(λk -λ*
k ) φk[k-1]ϕ*

k [k-1]
|φk[k-1]|2+|ϕk[k-1]|2+|χk[k-1]|2

,

q2[N]=q2[0]+2i∑
N

k=1

(λk -λ*
k ) φk[k-1]χ*

k [k-1]
|φk[k-1]|2+|ϕk[k-1]|2+|χk[k-1]|2

.

其中

T[k]=λk+1I-H[k-1]Λ[k]H[k-1]-1,Φk[k-1]=(T[k-1]T[k-2]…T[1])|λ=λkΦk,

H[k-1]=

φl[k-1] ϕ*
l [k-1] χ*

l [k-1]

ϕl[k-1] -φ*
l [k-1] 0

χl[k-1] 0 φ*
l [k-1]  ,Λ[k]=

λk 0 0

0 λ*
k 0

0 0 λ*
k

  ,I=

1 0 0
0 1 0
0 0 1  .

  

基于以上分析,得到方程(1)一阶孤子解表达式
 

q1[1]=q1[0]+2i(λ1-λ*
1 ) φ1[0]ϕ*

1 [0]
|φ1[0]|2+|φ1[0]|2+|χ1[0]|2

, (4)

q2[1]=q2[0]+2i(λ1-λ*
1 ) φ1[0]χ*

k [0]
|φ1[0]|2+|ϕ1[0]|2+|χ1[0]|2

. (5)

  根据上述经典Darboux变换,构造该方程广

义Darboux变换获取方程(1)的精确解.
  

设Ψ(λ3+η)=Φ3[2]|λ=λ3+η
是方程(2)相对于

谱参量λ=λ3+η的一个特解,η为扰动的一个小参

量,在η=0处对Ψ(λ3+η)进行泰勒展开,有

Ψ(λ3+η)=Ψ0+Ψ1η+Ψ2η2+…, (6)

其中Ψ0=(φ23[0] ϕ23[0] χ23[0])T,

Ψ1=(φ23[1] ϕ23[1] χ23[1])T.
 

利用Maple可求得泰勒展开式中的系数,由于

表达式较复杂,此处省略.
  

方程(1)的N-1阶广义Darboux变换定义如

下(N=2,3)
 

Φ1[0]=(φ23[0] ϕ23[0] χ23[0])T=Ψ0

Φ1[1]=(φ24[0] ϕ24[0] χ24[0])T=Ψ0+T[2]Ψ1,

q1[N]=q1[N -1]+2i(λ1-λ*
1 ) φ1[N +1]ϕ*

1 [N +1]
|φ1[N +1]|2+|ϕ1[N +1]|2+|χ1[N +1]|2

,

q2[N]=q2[N -1]+2i(λ1-λ*
1 ) φ1[N +1]χ*

k [N +1]
|φ1[N +1]|2+|ϕ1[N +1]|2+|χ1[N +1]|2

. (7)

2 二阶和三阶孤子的动力学特性
    

当N=2时,在给定谱参数的前提下,对自由

参数h1i、h2i 和h3i(i=1,2)取值,讨论二阶孤子的

动力学特性.
  

(1)当Re(λ1)≠Re(λ3),Im(λ1)=Im(λ3)时,

分量q1[2]、q2[2]中两个孤子发生弹性碰撞,孤子

在处碰撞发生了波动,碰撞前后孤子的传播方向和

轨迹都没有发生变化,以原来的振幅和方向继续向

前运动,如图1所示.
  

(2)当Re(λ1)=Re(λ3),Im(λ1)≠Im(λ3)时,

分量q1[2]、q2[2]中二阶孤子发生弹性碰撞.与图
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1相比,两个孤子运动轨迹间的夹角发生改变,在
碰撞瞬间能量发生变化,孤子振幅达到最大,碰撞

后传播方向和能量没有发生改变,如图2所示.
  

当N=3时,分析三阶孤子的动力学特性.比
较谱参数和的实部λ1 和λ3 虚部,分以下两种

情况:
(1)当Re(λ1)≠Re(λ3),Im(λ1)=Im(λ3)时,

分量q1[3]、q2[3]表现为三个孤子之间的弹性碰

撞,碰撞后三个孤子的振幅和传播方向未发生改

变,如图3所示,分量q1[3]的振幅比分量q2[3]的
振幅高,在碰撞瞬间振幅达到最大,能量在x=0
处达到最大.

 

(2)当Re(λ1)≠Re(λ3),Im(λ1)=Im(λ3)时,
分量q1[3]、q2[3]中的三个孤子发生弹性碰撞,在
碰撞过后,孤子能量发生波动,如图4所示.q1[3]
和q2[3]振幅和传播轨迹未发生改变,如图4(a)、

图4(b)所示,q1[3]和q2[3]的动力学特性相同.保
持其他参数不变,调整参数h12 和h32 值,此时,

q1[3]和q2[3]中的三个孤子发生非弹性碰撞.在
碰撞瞬间,有两个孤子退化为一个孤子.与弹性碰

撞相比,非弹性碰撞在碰撞后振幅变化明显降低,

但传播方向未发生改变,如图4(c)、图4(d)所示.

图1 h11=h21=h31=h12=h22=h21=i,λ1=-1+0.45i,
λ3=0.3+0.45i时,二阶孤子间的相互作用演化图

Fig.1 Second-order
 

solitons
 

at
 

h11=h21=h31=h12=h22=h21=i,
λ1=-1+0.45i,λ3=0.3+0.45i

图2 h11=h21=h31=h12=h22=h32=i,λ1=0.4+0.4i,
λ3=0.4+0.8i时,二阶孤子间的相互作用演化图

Fig.2 Second-order
 

solitons
 

at
 

h11=h21=h31=h12=h22=h32=i,
λ1=0.4+0.4i,λ3=0.4+0.8i

图3 h11=h21=h31=h12=h22=h32=i,λ1=0.2+0.7i,
λ3=0.4+0.4i时,三阶孤子间的相互作用演化图

Fig.3 Third-order
 

solitons
 

at
 

h11=h21=h31=h12=h22=h32=i,
λ1=0.2+0.7i,λ3=0.4+0.4i
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图4 h11=h31=2i,h22=5,λ3=0.4+0.6i时,三阶孤子之间的
相互作用演化图:(a)、(b)h12=i,h32=0;

(c)、(d)
 

h32=1+2i;h12=0

Fig.4 Third-order
 

solitons
 

atand
 

at
 

h11=h31=2i,h22=5,
λ3=0.4+0.6i

 

:
 

(a),(b)h12=i,h32=0;
(c),(d)

 

h32=1+2i;h12=0

3 小结
 

本文利用广义Darboux变换研究二分量耦合

Hirota方程高阶孤子解的动力学特性.基于二分量

耦合 Hirota方程的Lax对方程,选取种子解得到

Lax对方程的特解;利用泰勒展开,得到二阶、三阶

孤子解的表达式,分情况讨论谱参数,调整自由参

数λ的取值,通过数值模拟得到该方程的孤子解二

阶和三阶相互作用的演化图,分析孤子的弹性碰撞

以及非弹性碰撞的动力学特性.所得结果进一步丰

富了Hirota方程解的研究,对于理解非线性领域

中的孤子现象具有重要意义.
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