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Research on the Influence of Sommerfeld Effect on Self-Synchronous Systems

Gan Zichuan Ding Chuan Wang Xiao" Song Hanwen
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Abstract The single-degree-of-freedom two-rotor system, as the most classical self-synchronous sys-
tem, is widely used in engineering. In this paper, a dynamics model of the single-degree-of-freedom two-
rotor system is established using lLagrange’s equation, and a MATLAB/Simulink simulation model is
constructed based on the dynamics model. Firstly, a numerical simulation is carried out with completely
symmetric system parameters to analyze the Sommerfeld effect of the system. Then, by applying dis-
turbances to the system with different sets of system parameters in the numerical simulation, the self-
synchronization phenomenon under different system parameters is studied, system stability after disturb-
ance is investigated, and the ability of the system to recover self-synchronization is evaluated. Finally,
the self-synchronization phenomena appearing in the simulation were classified, and how the system pa-
rameters will affect the system’s synchronization recovery capability is also given. The results of numer-
ical simulation and analysis show that, with different system parameters, the self-synchronization phe-
nomena can be classified into three categories: stable self-synchronization with in-phase synchronization
in the near-resonant region and anti-phase synchronization in the far resonant region, as well as unstable
self-synchronization with randomness response after being disturbance when working in the violent reso-
nance region of the system. The result also shows the system’s self-synchronization capability is stron-

gest when the rotor is operated in the near-resonance region of the system. The results of this study can
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provide a reference for the study of self-synchronization phenomena in more complex vibration systems.
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