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Abstract In order to collect continuous and readily available human vibration energy. an electromagnetic
energy-harvesting device embedded in a backpack is proposed based on the inerter component. The de-
vice also aims to enhance human comfort and overcome the challenge of damping matching in traditional
energy harvesting devices. The energy transfer efficiency of the device was analysed using force-electrici-
ty analogy and the maximum power transfer theorem. The impact of the device on the load experienced
by the human body was also taken into consideration by establishing mathematical models and researc-
hing human gait characteristics. The findings suggest that the device can enhance the efficiency of human
vibration energy collection by introducing a new degree of freedom that enables effective adjustment of
the system’s natural frequency to match the human vibration frequency. Additionally, selecting appropri-
ate inertance can significantly reduce the biomechanical load on the human body. Finally, the theoretical
analysis was validated through a simulation platform based on the mechanism of human joint movement

and a genetic algorithm, confirming the effectiveness of the proposed approach.
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Fig. 1 Overall structure of the backpack
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Table 1 The main parameters used in the simulation

Parameter Value
Load mass m/kg 8
Spring rate £/(N.m™ ") 7000
Mechanical damping ¢, /(N.s-m™ ") 85
Torque constant K /(rpm-V~ ") 1.21X10 ¢
Potential constant K _/(rpm-V ") 790
Rotor moment of inertia J  /(kg-m®) 3.06X10" 7
Motor armature resistance R,/Q 0.275
External resistance R /Q 20
Speed box reduction ratio n 25
Gear radius r/mm 7.3
Flywheel mass m/kg 1. 061
Flywheel radius 7/mm 15
Lead of the lead screw p/(mm-rev ') 6
Inertance b /kg 32.726




