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Abstract A model updating study of the GARTEUR aircraft model is conducted by using an interval
model updating method based on the adaptive Kriging model. Firstly, the modal analysis of the GAR-
TEUR aircraft model is performed., and the material parameters of the model that have a large influence
on the response are established by the Spearman correlation analysis combined with engineering experi-
ence. The universal grey number theory is introduced to transform the interval model updating problem
into an optimization problem about the upper bounds of the interval and the diameter of the interval. The
relationship between model inputs and outputs is constructed by an adaptive Kriging model construction
method. The particle swarm algorithm is used to solve the objective functions of the upper bound of the
interval and the diameter of the interval to complete the model updating. The results show that the er-
rors of the upper and lower bounds of the updated parameter intervals meet the requirements of engi-
neering accuracy, and the model has good prediction accuracy, which verifies the feasibility and accuracy

of the adopted interval model updating method.
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Table 1 Comparison of relative errors between parameter
interval lower bounds of the GARTEUR model

Item True Initial Error % Updated Error %
E_/GPa 63. 00 62.00 —1.59 62.91 —0.15

0u/(kg-m ®) 2502.00 1860.00 —25.66 2519.39 0.70

0,/(kg-m *) 2502,00 2300.00 —8.07 2513.74 0.47
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Table 2 Comparison of relative errors between parameter
interval upper bounds of the GARTEUR model

Item True Initial Error % Updated Error %

E,/GPa 77.00 94. 00 22.08 77.53  0.69

0u/(kg-m °) 3058.00 3220.00  5.30 3067.53 0.31

p,/(kg~m73) 3058.00  3600.00 17.72 3029.80 —0.92
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Table 3 Comparison of relative errors in response

interval lower bounds of the GARTEUR model

Item True/Hz Initial/Hz Error/ % Updated/Hz Error/ %

f1 4,98 4,74 —4.87 4.99 0.10
/o 14.57 14.28  —1.98  14.56 —0. 04
I3 34. 23 33.00 —3.60  34.20 —0.08
£ 35. 88 33.08  —7.81  36.01 0. 36
fs 35. 96 33.47  —6.93  36.09 0. 36
i 39. 46 37.84  —4.09  39.40 —0.15
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Table 4 Comparison of relative errors in response
interval upper bounds of the GARTEUR model

Item True/Hz Initial/Hz Error/% Updated/Hz Error/ %

i 5.91 6.89 16. 55 5.92 0. 14
1o 16. 24 17.91 10. 23 16. 28 0.21
S 38. 25 43,24 13. 04 38.23 —0.04
i 43.70 50. 33 15.17 43.74 0.09
fs 43. 81 50. 44 15.15 43, 84 0.08
i 47.61 57.06 19. 86 47. 62 0. 04
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