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Abstract This article studies a fast calculation method for the state failure time of nonlinear dynamic
systems given the failure state set. Firstly, a classic method for global analysis of nonlinear dynamical
systems, the point mapping under cell reference method, is improved to calculate the state failure time.
Then the improved method is used to calculate Duffing system, a forced bistable structure, and spring
loaded inverted pendulum model. The influence of the convergence threshold of the method on the calcu-
lation error and time is analyzed. The results show that the proposed method can achieve efficient calcu-

lation of failure time of a large number of state points while meeting certain accuracy requirements.
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Fig. 1 PMUCR schematic diagram of two-dimensional system
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Table 1 Comparison of PMUCR and traditional point
mapping method of Duffing system
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Fig. 2 Failure time contour of Duffing system: PMUCR
method (left), with threshold 0. 0002; traditional point mapping
method (right). The white area indicates the security status

B3 1A LLAE S, Y | E R EH 0. 001 B,
PUMCR 5 [a] A GBS 17, 069 %6, AR 28
B2 A 2.7 F Y B BOMR X R 22 B 1. 47%.
B 5 2 7% A A E BIE Y % 2 46 /N, PMUCR J5 511
SRR ST S T 38 o O R T v AE R 1. 9 X



12 8 %

5 & #l % 4

2025 4R 23 &

10" I, PR SR 3 £ 1 D7 T L AT IR 22
B2 U SR A S

TAF SR WURR 25 45 4 7 BE i W 58 U A5 U 1
JRZ I PR R — 2 AT AR AR S —
2 32 (A VS (0 WU R S 5 R gy R R

=y
y=—cy—a,x —a,x’ —asx’ -+ Fsind
0=0 (12)

AH,a,=0.8152,a,=—1.404 6,a,=0.5,c=
0.02,F=0.05,02=0.902 88.

ARG IRS 2 0] o = 4, o BUEIEE [ —1,
0.819 4],y BUAJEHI N[ —0.6,0. 67,0 HBUH [
KOs 2], IR GEAE AN 32 W I A T A A Y- A
[C0,0)F1(1.98,0) JLA B —> & 5. (0. 8194,0) , %
ST DATA R 2 PR A R A =2 (B 1 4 A A PR L BB
AW kg R A X3 U] 2 353 L R 2 =0, 8194, d 4R
A 4 100 X100 X 180 AN, B3 20 K Ry
0. 01 A 4 39 B3 20 8 EBR Sy 5000, AN [] 159
if PMUCR F% 58 mi WS J5 6 9 LU AL an 36 2 s
T RGO =4 25 R 48 2 AL e V) ok
. /3 251 T A 0.0006 B AL 0=0. 0349 Ay
PMUCR Jy 358 1 18 B0 19 XURR 245 45 14 185 A 1y
R 6] 2z (B 5 4% 58 05 s 1 L 3K

2 TSR WAL A L PMUCR 4% 55 5 B 5
75 i b 2

Table 2 Comparison of PMUCR and traditional point mapping
method of bistable structure under harmonic excitation
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Fig. 3 Failure time contour of bistable structure model under
harmonic excitation (phase 6=0. 0349) : PMUCR method (upper) ,
with threshold 0. 0006; traditional point mapping method (below)
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Table 3 Comparison of PMUCR and traditional point
mapping methods of SLIP model
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Fig. 5 Failure time contour of SLIP model: PMUCR method (upper) ,
with threshold 0. 0005; traditional point mapping method (below)
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