
第23卷第1期

2025年1月
动 力 学 与 控 制 学 报

JOURNAL
 

OF
 

DYNAMICS
 

AND
 

CONTROL
Vol.23

  

No.1
Jan.2025

文章编号:1672-6553-2025-23(1)-008-007 DOI:10.6052/1672-6553-2024-056

 2024-05-24收到第1稿,2024-06-18收到修改稿.
*国家自然科学基金资助项目(12172267),National

 

Natural
 

Science
 

Foundation
 

of
 

China
 

(12172267).
†

 

通信作者
 

E-mail:kmguo@xidian.edu.cn

非线性动力系统失效时间的胞参考点映射方法*

吴晓奇1 郭空明1† 江俊2 徐亚兰1

(1.西安电子科技大学
 

机电工程学院,
 

西安 710071)

(2.西安交通大学
 

机械结构强度与振动国家重点实验室,
 

西安 710049)

摘要 本文研究在给定状态空间失效状态集的情况下,非线性动力系统状态失效时间的快速计算方法.首

先将非线性动力系统全局分析的一种经典方法胞参考点映射法进行改进,以计算失效时间.然后用改进的

方法对Duffing系统、一类受迫双稳态结构和弹簧负载倒立摆模型进行了计算,并分析了方法的收敛阈值对

计算误差和计算时间的影响.结果表明,文中提出的方法可以在满足一定精度的前提下,实现大量状态点失

效时间的高效计算.
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Abstract This
 

article
 

studies
 

a
 

fast
 

calculation
 

method
 

for
 

the
 

state
 

failure
 

time
 

of
 

nonlinear
 

dynamic
 

systems
 

given
 

the
 

failure
 

state
 

set.
 

Firstly,
 

a
 

classic
 

method
 

for
 

global
 

analysis
 

of
 

nonlinear
 

dynamical
 

systems,
 

the
 

point
 

mapping
 

under
 

cell
 

reference
 

method,
 

is
 

improved
 

to
 

calculate
 

the
 

state
 

failure
 

time.
 

Then
 

the
 

improved
 

method
 

is
 

used
 

to
 

calculate
 

Duffing
 

system,
 

a
 

forced
 

bistable
 

structure,
 

and
 

spring
 

loaded
 

inverted
 

pendulum
 

model.
 

The
 

influence
 

of
 

the
 

convergence
 

threshold
 

of
 

the
 

method
 

on
 

the
 

calcu-
lation

 

error
 

and
 

time
 

is
 

analyzed.
 

The
 

results
 

show
 

that
 

the
 

proposed
 

method
 

can
 

achieve
 

efficient
 

calcu-
lation

 

of
 

failure
 

time
 

of
 

a
 

large
 

number
 

of
 

state
 

points
 

while
 

meeting
 

certain
 

accuracy
 

requirements.
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引言
  

非线性动力系统,或称为非线性动态系统,作
为一类复杂的系统,广泛存在于力学、物理、电力、

生态等学科领域中,其具有多稳态、分岔等复杂现

象.非线性动力系统的数学模型为非线性微分方程

或差分方程.在实际工程应用中,通常希望系统运

行在一个指定的稳态响应上,对于多稳态系统,传
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统的局部线性稳定性分析手段已不适用,需要对系

统的吸引子及其吸引域进行计算[1],目前只能通过

数值手段来完成这一点,
 

通常采用状态空间离散

化或者采样的方法.传统的全局分析手段主要目的

是计算吸引子以及吸引域,一般将一个特定吸引子

作为希望达到的稳态,而把吸引子认为是不安全的

稳态.
对于吸引子和吸引域的计算,特别是对于低维

系统,目前已有一系列的方法.除了对采样点直接

逐个计算的点映射法外,为节省计算时间还可以采

用各 种 胞 映 射 方 法.1980年,美 国 工 程 院 院 士

Hsu[2]先后提出了简单胞映射法和广义胞映射法,

这两种方法实际上具有不同的理论基础,前者是在

离散化的状态空间进行轨道演化,通过充分利用之

前计算过的轨道的信息来减少计算量.而后者主要

从向量场的角度出发,其理论基础为马尔可夫过程

和矩阵理论.两者的关系类似于流场的拉格朗日描

述和欧拉描述.与简单胞映射相比,广义胞映射有

更为坚实的数学基础,加之计算转移概率密度矩阵

的特点使得它应用范围更广,因此逐渐成为胞映射

法的主流,该方法的进一步发展包括有向图广义胞

映射方法[3]、机器学习广义胞映射[4]、并行广义胞

映射[5]、广义胞映射优化控制[6]等.
  

近年来,随着计算机性能的提升以及并行计算

技术的发展,非线性动力系统全局稳定性问题的相

关研究也日益增多,涌现了诸多关于全局稳定性的

新概念.例如 Rega等人提出的局部完整性测度

(local
 

integrity
 

measure,
 

LIM)[7]、Menck等人提

出的吸引域稳定性(basin
 

stability)等[8].这些概念

还是植根于吸引子和吸引域.随着对生态学、社会

科学、大气科学、电力网络等更为复杂动态系统的

深入研究,非线性动力系统的全局稳定性问题继续

得到深化和泛化.根据不同实际问题的要求,对于

系统稳定性的研究不再与代表稳态响应的吸引子

直接相联系,而是对状态空间区域进行分类,人为

划分出安全的区域以及失效区域.这样一方面可以

适应实际问题的需要,另一方面可以考虑系统的暂

态响应.Hellmann[9]提出了存活率(survivability)

的概念,此概念定义为给定一个随机的初始条件,

暂态响应离开安全区域的概率.Schoenmakers[10]

从系统的功能性考虑,提出了系统受干扰后恢复能

力的衡量(resilience).该工作指出,可以从系统运

行角度将功能相同的吸引子认为是同一类响应.
  

稳定性可以刻画状态恢复至期望区域的能力,

而生存性等指标研究状态是否会进入失效区域.各
类稳定性和生存性指标通常将系统作为一个整体,

定量刻画系统随自身参数变化时的指标变化情况.
但系统轨道的恢复力和安全与否,实际上取决于轨

道的初始条件,在考虑有限时间内轨道是否失效

时,这一点尤为明显.本文在状态空间给定失效区域

的前提下,研究不同初始状态轨道首次进入失效区

域的时间,并以此刻画系统不同状态的安全性.同
时,基于江俊和徐健学提出的胞参考点映射法[11]发

展了一种高效计算各状态安全性的算法.本文首先

对问题进行定义,然后介绍了利用胞参考点映射法

计算各状态点失效时间的方法,并通过几个算例对

方法的效率和误差进行讨论,最后给出总结.

1 问题描述
  

考虑如下的微分动力系统:

x· =f(x) (1)
  

其中x=x(t)∈Rn 是n 维向量函数,映射f:U→
Rn 是定义在某个子集U⊆Rn 上的光滑函数.φt:

U→Rn 为f 生成的流.规定K⊆U 为非失效区域.
考虑到在实际应用中,系统运行时间有限,因此定

义T 时间内的安全区域ST 为以下状态的集合:

ST = {x∈K 0<∀t≤T,φt(x)∈K}(2)
  

而以下状态集合组成T 时间内的不安全区域:

DT ={x ∈K 0< ∃t<T,φt(x)∉K}

(3)

  

定义T 时间内的不安全状态x 的失效时间为:

τ(x)=min{t>0x ∈K,φt(x)∉K}

(4)

  

对于离散映射系统,亦可作类似的定义.由于

微分动力系统经常采用时间离散算法进行求解,因
此在实际数值计算相关问题时,也往往作为离散系

统处理.考虑离散映射:

xn+1=G(xn) (5)
  

定义N 步安全区域SN 为以下状态的集合:

SN ={x ∈K 0< ∀k≤N,Gk(x)∈K}

(6)

  

而以下状态集合组成N 步内的不安全区域:

DN ={x ∈K 0< ∃k<N,Gk(x)∉K}

(7)
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定义N 步内的不安全状态x 的失效步数为:

τ(x)=min{k>0x ∈K,Gk(x)∉K}
(8)

  

本文研究给定系统方程、失效区域和运行时间

上限(时间T 或步数N)时,如何计算出:(1)安全

区域;(2)不安全区域各状态的失效时间.实际采用

的方法多是数值方法,其中最直接的方法是在非失

效区域内划定一片感兴趣的区域,然后在该区域内

均匀选取一些状态点.将这些状态点作为系统初始

条件逐一生成轨道进行计算.以离散时间系统为

例,若状态所生成的轨道在N 步内未失效,则认为

其为安全状态.若状态生成的轨道在τ步时首次进

入失效区域,则认为该状态不安全并将τ作为其失

效步数.下文将该方法称为传统点映射法,其虽然

直观、精确,但计算效率不高,原因是未充分利用之

前状态所生成轨道的信息.本文所采用的胞参考点

映射法正是基于这一点进行改进.

2 计算方法
  

胞参考点映射方法(point
 

mapping
 

under
 

cell
 

reference,下文简称PMUCR)由江俊和徐健学在

1994年首次提出[11].该方法实际上并不是胞映射

方法,而是借鉴了简单胞映射思想的点映射方法,

使得方法同时具备点映射的精确性和胞映射的高

效性.其主要思路是将之前计算的轨道及其特性进

行存储,在后续积分时,若当前轨道的状态与之前

存储的轨道上某点距离足够接近,则认为两轨道具

有相同的长期行为,从而可以终止当前轨道的演

化.显然,若将当前轨道状态与之前存储的所有轨

道上的所有点相比较,则不但不会提升计算效率,

反而会因花费大量时间用于计算点与点之间的距

离导致效果不如传统点映射.PMUCR运用胞映射

动力系统状态空间离散化的思想,通过将每个胞中

放置参考点,使得胞空间仅用于可快速找到与当前

状态点距离较近(但可能不是最近)的参考点,而不

影响轨道的精确演化.PMUCR方法如图1所示,

其基本思想是每积分计算得到一个新的点,都可以

快速定位其位于胞参考框架的哪个胞中,然后根据

胞中参考点与当前点的距离判断是否继续演化轨

道,若轨道终止则根据该胞的信息对当前轨道的初

始点进行定性.传统PMUCR方法仅用于计算吸

引子及其吸引域,本文对其进行拓展,以便实现状

态安全性及失效时间的高效计算.

图1 二维系统PMUCR示意图

Fig.1 PMUCR
 

schematic
 

diagram
 

of
 

two-dimensional
 

system
   

对于选定的状态空间区域,在每一维度均匀布

置网格,从而划分出胞参考框架.将每个胞的中心

点作为采样点进行计算,判断其是否安全,若不安

全则计算其失效时间.与传统PMUCR方法类似,

用一个取有限状态的变量(下文用Id表示)对每个

胞的特性进行标识.用Id=0代表未处理胞,Id=
-1代表处理中的胞,Id=1和2分别代表安全和

失效的胞.若一个胞已被轨道经过,则其内一定有

一个参考点.
  

程序将各采样点作为初始条件逐一进行计算,

并用一个数组顺序存储轨道经过的胞的编号,称为

胞轨道.对于一个初始状态,首先查看其所在胞的

Id.若该胞Id=1或2,则计算初始状态与胞中参考

点距离,小于程序给定的阈值则不进行轨道演化,

直接将参考点的特性(安全与否,失效时间)赋予初

始点.若大于阈值或Id=0则将这个初始状态设为

胞的参考点(若胞中已有参考点则进行覆盖),胞Id
设置为-1,将该胞的编号存入胞轨道,继续积分.
若轨道暂时离开了选定区域(但未至失效区域),则
在胞轨迹中存入0(后续不对这些胞进行处理),这
样可以保证胞轨道长度与积分步数一致.积分过程

中可能有如下情况:
  

(1)积分步数对应的时间大于时间上限,认为

当前轨道安全,把胞轨道中编号非0的胞均标记为

安全(Id=1).
  

(2)积分结果进入失效区域,则把胞轨道中编

号非0的胞均标记为失效(Id=2),并根据已积分

的步数倒推当前轨道中每个胞的失效时间.
  

(3)以上两条都不满足,则判定积分后所在胞

01



第1期 吴晓奇等:非线性动力系统失效时间的胞参考点映射方法

是否在选定范围外,若在选定范围外,继续积分不

做处理,胞轨道中存入0.
(4)以上三条都不满足,则计算积分后状态所

在的胞编号,读取该胞对应的Id.
  

若胞Id=1,且当前状态与参考点距离小于阈

值,则认为当前轨道安全,胞轨迹中所有编号非0
的胞都设置为Id=1,结束该轨道的积分,若大于阈

值则继续积分,胞轨道中存入0(表示这些胞后续

不再重新处理).
  

若胞Id=2,且与参考点距离小于阈值,认为当

前轨道不安全,暂时将胞轨迹中所有编号非0的胞

都设置Id=2,并计算出这些胞的失效时间,结束当

前轨道的积分.若其中有胞的失效时间大于时间上

限也认为安全,重新将其Id设置为1.若距离大于

阈值则继续积分,胞轨道中存入0.
  

若胞Id=0则将其置为Id=-1(正在处理的

胞),并设置目前的状态为该胞的参考点,把胞存入

胞轨道,并继续积分.
  

若Id=-1,且与参考点距离小于阈值,说明找

到了吸引子(不动点或周期),将胞轨道中所有编号

非0的胞Id设置为1并结束当前轨道积分,若大

于阈值则将当前的点设置为该胞的参考点,并继续

积分.

3 算例

为了验证方法的有效性,本节应用PMUCR法

对三个典型算例进行计算.计算结果将与传统点映

射法进行比较,并定义以下指标对比较进行量化:

(1)状态误差:将所有初始状态的安全与否用

所在 胞 的 Id 来 标 识,用 下 标 PMUCR 表 示

PMUCR方法的计算结果,Np 为总点数,则状态误

差定义为:

estate=
1
Np
∑
Np

i=1
IdPMUCR(i)-Id(i) (9)

  

(2)平均步数相对误差:假设两种方法所得状

态均为失效的点的数目为 Nf,平均步数相对误差

定义为两种方法中求出的失效步数绝对值相对误

差的平均值:

estep=
1
Nf
∑
Nf

i=1

τPMUCR(i)-τ(i)
τ(i)

(10)
  

(3)计算时间比:指PMUCR方法与传统点映

射方法执行计算所花费时间的比值.

算例1: Duffing方程
  

Duffing系统是一类典型的非线性振动系统模

型[12].本文研究的Duffing系统方程为:

x· =y
y
·
=-0.1y+x-x3

 

(11)
  

Duffing方程的状态空间为二维,x 取值范围

为
 

[-2,0],y 取值范围为[-2,2],规定失效区域

为x>0.将状态空间划分为100×200个胞.采用

定步长四阶龙格-库塔法求解式(11),积分步长为

0.01,积分步数上限为5000.不同阈值时PMUCR
和传统点映射方法的比较列入表1.图2给出了阈

值0.0002的PMUCR方法的失效时间云图与传统

方法的比较.

表1 Duffing系统PMUCR和传统点映射方法的比较

Table
 

1 Comparison
 

of
 

PMUCR
 

and
 

traditional
 

point
 

mapping
 

method
 

of
 

Duffing
 

system

阈值 计算时间比 状态误差 平均步数相对误差

1.0×10-3 0.170
 

69 2.7×10-3 1.472
 

5×10-3

5.0×10-4 0.376
 

18 3.5×10-4 3.835
 

3×10-5

3.0×10-4 0.597
 

13 2.0×10-4 1.421
 

0×10-4

2.0×10-4 0.764
 

31 5.0×10-5 8.016
 

5×10-5

1.9×10-4 0.780
 

93 0 7.641
 

2×10-5

1.0×10-4 0.957
 

37 0 2.880
 

9×10-5

图2 Duffing系统失效时间云图:PMUCR方法(左),阈值0.0002;
传统点映射方法(右).白色表示安全状态

Fig.2 Failure
 

time
 

contour
 

of
 

Duffing
 

system:
 

PMUCR
 

method
 

(left),
 

with
 

threshold
 

0.0002;
 

traditional
 

point
 

mapping
 

method
 

(right).
 

The
 

white
 

area
 

indicates
 

the
 

security
 

status
  

由表1可以看到,当阈值设置为0.001时,

PUMCR计算时间只有点映射的17.069%,状态

误差只有2.7‰,平均步数相对误差只有1.47‰.
随着参考点判定阈值的逐步缩小,PMUCR方法计

算耗时逐渐增加,精度逐渐升高,在阈值取1.9×

11
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10-4 时,两种算法在定性方面已没有误差.
算例2: 简谐激励的双稳态结构

  

近年来,双稳态结构在能量收集领域等取得了

广泛应用[13],因此成为一类研究热点.本算例为一

类受简谐激励的双稳态结构系统的方程如下[14]:

x· =y
y
·
=-cy-a1x-a2x2-a3x3+Fsinθ

θ
·
=Ω

 

(12)
  

式中,a1=0.8152,a2=-1.404
 

6,a3=0.5,c=
0.02,F=0.05,Ω=0.902

 

88.
系统的状态空间为三维,x 取值范围为[-1,

0.819
 

4],y 取值范围为[-0.6,0.6],θ 取值范围

为[0,2π],此系统在不受激励时有两个稳定平衡点

[(0,0)和(1.98,0)]以及一个鞍点(0.8194,0),鞍
点可以认为是两个稳态之间的分界点,因此取鞍点

右侧为失效区域,则失效范围为x>0.8194.将状

态空间划分为100×100×180个胞,积分步长为

0.01个激励周期,积分步数上限为5000.不同阈值

时PMUCR和传统点映射方法的比较如表2所示.
由于系统是三维,结果用指定相位的二维切片来展

示.图3给出了阈值0.0006时,相位θ=0.0349的

PMUCR方法计算简谐激励的双稳态结构模型的

失效时间云图与传统方法的比较.

表2 简谐激励的双稳态结构PMUCR和传统点映射
方法的比较

Table
 

2 Comparison
 

of
 

PMUCR
 

and
 

traditional
 

point
 

mapping
method

 

of
 

bistable
 

structure
 

under
 

harmonic
 

excitation

阈值 计算时间比 状态误差 平均步数相对误差

0.001
 

000 0.375
 

27 0.004
 

492
 

80 0.002
 

826
 

10

0.000
 

900 0.492
 

78 0.003
 

782
 

80 0.002
 

323
 

60

0.000
 

600 0.663
 

50 0.001
 

790
 

60 0.001
 

058
 

60

0.000
 

500 0.755
 

36 0.001
 

261
 

10 0.000
 

736
 

69

0.000
 

442 0.775
 

95 0.000
 

999
 

44 0.000
 

575
 

69

0.000
 

400 0.783
 

69 0.000
 

808
 

33 0.000
 

448
 

81

图3 简谐激励的双稳态结构模型失效时间云图(相位θ=0.0349):
PMUCR方法(上),阈值0.0006;传统点映射方法(下)

Fig.3 Failure
 

time
 

contour
 

of
 

bistable
 

structure
 

model
 

under
 

harmonic
 

excitation
 

(phase
 

θ=0.0349):
 

PMUCR
 

method
 

(upper),
 

with
 

threshold
 

0.0006;
 

traditional
 

point
 

mapping
 

method
 

(below)

由表2所示,在阈值为0.001时,PMUCR方法

计算 时 间 仅 为 点 映 射 的 23.512%,精 度 只 有

0.449
 

28%的偏差,平均步数误差也不到0.3%.当
参考点判断阈值缩小到0.000

 

442,误差已不到

0.1%,时间只有77.6%,提速效果非常明显.
算例3: 弹簧负载倒立摆(SLIP)模型

  

此模型是一类典型的混杂(hybrid)动力系统,为
了模拟足式运动而提出.该系统的模型如图4所示,

由弹簧和质点组成,仅对质点的速度和高度两个维

度分析.

图4 SLIP模型的示意图
Fig.4 A

 

schematic
 

diagram
 

of
 

SLIP
 

model

模型整个运动分为两个阶段:飞行阶段和站立

阶段.
  

飞行阶段的方程为自由落体:

x··=0
y
··
= -g

 

(13)
  

站立阶段的方程为:

x··=
k
m
(l0-l)

l
(x-xf)

y
··
=

k
m
(l0-l)

l y-g
 

(14)
  

两阶段过渡条件分别是:
  

触地(飞行阶段到站立阶段):

21
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y=l0cosα (15a)
  

起飞(站立阶段到飞行阶段):

(x-xf)2+y2 =l0  (15b)
  

SLIP模型失效有多种形式:在飞行阶段有坠落

失效(y<0),站立阶段有逆向(x·<0)和坠落失效

(y<0),起飞时有下落(y
·<0)和坠落失效(y<0).方

程(13)~(15)中各参数的含义及取值可参见文献

[15].本文将触地角度α固定为0.36.
  

从方程(13)和(14)可以看出系统是两自由度四

维系统,但方程右端与x 无关.若取每一次飞行状态

最高点处(y
·=0)的水平速度x· 和高度y,则系统可

以看成一个二维映射:

x·n+1

yn+1  =G
x·n+1

yn+1  (16)
  

因此本节SLIP模型的初始条件在二维空间中

选取,设 x· 取 值 范 围 为
 

[1.2,1.6],y 范 围 为

[0.9359,1.35].将状态空间划分为200×200个胞.
求解站立阶段方程(14)的积分步长为0.001.该算例

中的步数指方程(16)中的n,上限为100.不同阈值

时PMUCR和传统点映射方法的比较列入表3.图5
给出了阈值0.0005的PMUCR方法计算SLIP失效

时间云图与传统方法的比较.

表3 SLIP模型PMUCR和传统点映射方法的比较

Table
 

3 Comparison
 

of
 

PMUCR
 

and
 

traditional
 

point
 

mapping
 

methods
 

of
 

SLIP
 

model

阈值 计算时间比 状态误差 平均步数相对误差

0.000
 

50 0.137
 

76 0.007
 

475 0.006
 

304
 

8

0.000
 

40 0.192
 

36 0.005
 

500 0.005
 

304
 

7

0.000
 

30 0.272
 

19 0.004
 

500 0.004
 

132
 

1

0.000
 

20 0.360
 

25 0.002
 

975 0.003
 

157
 

0

0.000
 

10 0.438
 

25 0.001
 

575 0.002
 

737
 

3

0.000
 

01 0.465
 

71 0.000
 

900 0.002
 

404
 

5

图5 SLIP模型失效时间云图:
PMUCR方法(上),阈值0.0005;传统点映射方法(下)

Fig.5 Failure
 

time
 

contour
 

of
 

SLIP
 

model:PMUCR
 

method
 

(upper),
  

with
 

threshold
 

0.0005;
 

traditional
 

point
 

mapping
 

method
 

(below)
  

由表3所示,在阈值为0.0005时,PMUCR方法

计算时间占点映射时间的13.776%,状态误差只有

0.7475%,平均步数相对误差只有0.63%.随着阈值

缩小到0.000
 

01,PMUCR方法花费时间仍不到点映

射的一半,状态误差已缩小到0.09%.

4 结论
  

本文提出了一种改进的PMUCR方法,可对非

线性动力系统状态空间失效区域实现定量计算,并
实现了给定状态空间失效区域和系统运行时间时,

非线性动力系统状态的失效与否及失效时间的高效

计算.通过对三个典型案例的结果可以看出,Duffing
系统、受迫双稳态系统和SLIP模型的计算效率均有

不同程度的提升,误差也均可令人满意.因此改进后

的PMUCR方法能够显著提高判断失效状态和计算

失效时间的效率.总体来看,随着参考点阈值的减

小,误差随之减小,但计算时间会随之增加.
  

本文的方法虽然在满足较好的精度前提下,实

现了计算效率的提升,但仍存在一些不足.例如对于

SLIP模型算例,其失效区域边界较为复杂,通过对

比失效时间云图可以看到,状态误差主要发生在蓝

色与白色区域的交界处以及“尾迹”处,其原因和改

善方法需要进一步分析.未来将改善该方法在复杂

形状乃至分形失效区域问题中的计算精度.

参考文献

[1] 陈丽霞,
 

石建飞.
 

路面激扰与电磁激扰下电动轮车辆

系统非线性全局动态特性研究[J].
 

动力学与控制学

报,
 

2023,
 

21(6):
 

88-98.

31



动 力 学 与 控 制 学 报 2025年第23卷

CHEN
 

L
 

X,
 

SHI
 

J
 

F.
 

Nonlinear
 

global
 

dynamic
 

characteristics
 

of
 

electric
 

wheeled
 

vehicle
 

systems
 

with
 

pavement
 

and
 

magnetic
 

excitations
 

[J].
 

Journal
 

of
 

Dy-

namics
 

and
 

Control,
 

2023,
 

21(6):
 

88-98.
 

(in
 

Chi-

nese)
 

[2] HSU
 

C
 

S.
 

Cell-to-cell
 

mapping:
 

A
 

method
 

of
 

global
 

a-

nalysis
 

for
 

nonlinear
 

systems
 

[M].
 

New
 

York:
 

Sprin-

ger
 

New
 

York,2013.
[3] 徐健学,

 

洪灵.
 

全局分析的广义胞映射图论方法[J].
 

力学学报,
 

1999,
 

31
 

(6):
 

724-730.

XU
 

J
 

X,
 

HONG
 

L,
 

Generalized
 

cell
 

mapping
 

digraph
 

method
 

for
 

global
 

analysis
 

[J].
 

Chinese
 

Journal
 

of
 

Theoretical
 

and
 

Applied
 

Mechanics,
 

1999,
 

31
 

(6):
 

724-730.
 

(in
 

Chinese)

[4] YUE
 

X
 

L,
 

CUI
 

S
 

P,
 

ZHANG
 

H,
 

et
 

al.
 

Generalized
 

cell
 

mapping
 

method
 

with
 

deep
 

learning
 

for
 

global
 

analysis
 

and
 

response
 

prediction
 

of
 

dynamical
 

systems
 

[J].
 

International
 

Journal
 

of
 

Bifurcation
 

and
 

Chaos,
 

2021,
 

31(15):
 

2150229.
 

[5] XIONG
 

F
 

R,
 

QIN
 

Z
 

C,
 

DING
 

Q,
 

et
 

al.
 

Parallel
 

cell
 

mapping
 

method
 

for
 

global
 

analysis
 

of
 

high-dimensional
 

nonlinear
 

dynamical
 

systems
 

[J].
 

Journal
 

of
 

Applied
 

Mechanics,
 

2015,
 

82(11):
 

111010.
 

[6] QIN
 

Z
 

C,
 

XIONG
 

F
 

R,
 

DING
 

Q,
 

et
 

al.
 

Multi-objec-

tive
 

optimal
 

design
 

of
 

sliding
 

mode
 

control
 

with
 

parallel
 

simple
 

cell
 

mapping
 

method
 

[J].
 

Journal
 

of
 

Vibration
 

and
 

Control,
 

2017,
 

23(1):
 

46-54.
 

[7] REGA
 

G,
 

LENCI
 

S.
 

Dynamical
 

integrity
 

and
 

control
 

of
 

nonlinear
 

mechanical
 

oscillators
 

[J].
 

Journal
 

of
 

Vibra-

tion
 

and
 

Control,
 

2008,
 

14(1/2):
 

159-179.
 

[8] MENCK
 

P
 

J,
 

HEITZIG
 

J,
 

MARWAN
 

N,
 

et
 

al.
 

How
 

basin
 

stability
 

complements
 

the
 

linear-stability
 

paradigm
 

[J].
 

Nature
 

Physics,
 

2013,
 

9:
 

89-92.
 

[9] HELLMANN
 

F,
 

SCHULTZ
 

P,
 

GRABOW
 

C,
 

et
 

al.
 

Survivability
 

of
 

deterministic
 

dynamical
 

systems
 

[J].
 

Scientific
 

Reports,
 

2016,
 

6:
 

29654.
 

[10] SCHOENMAKERS
 

S,
 

FEUDEL
 

U.
 

A
 

resilience
 

con-

cept
 

based
 

on
 

system
 

functioning:
 

a
 

dynamical
 

systems
 

perspective
 

[J].
 

Chaos,
 

2021,
 

31(5):
 

053126.
 

[11] JIANG
 

J,
 

XU
 

J
 

X.
 

A
 

method
 

of
 

point
 

mapping
 

under
 

cell
 

reference
 

for
 

global
 

analysis
 

of
 

nonlinear
 

dynamical
 

systems
 

[J].
 

Physics
 

Letters
 

A,
 

1994,
 

188(2):
 

137-

145.
 

[12] 冷萌萌,
 

钱有华.
 

周期激励下广义离散Duffing系统

的多稳态分析[J].
 

动力学与控制学报,
 

2023,
 

21
(10):

 

18-25.

LENG
 

M
 

M,
 

QIAN
 

Y
 

H.
 

Multi-stability
 

analysis
 

of
 

generalized
 

discrete
 

duffing
 

systems
 

under
 

periodic
 

exci-

tation
 

[J].
 

Journal
 

of
 

Dynamics
 

and
 

Control,
 

2023,
 

21
(10):

 

18-25.
 

(in
 

Chinese)
 

[13] 张莹,
 

高艺玲,
 

段霞霞,
 

等.
 

双不确定参数作用下双

稳态能量采集系统的随机响应分析[J].
 

动力学与控

制学报,
 

2023,
 

21(10):
 

72-84.

ZHANG
 

Y,
 

GAO
 

Y
 

L,
 

DUAN
 

X
 

X,
 

et
 

al.
 

Stochastic
 

response
 

analysis
 

of
 

bistable
 

energy
 

harvesting
 

system
 

with
 

double
 

uncertain
 

parametters
 

[J].
 

Journal
 

of
 

Dy-

namics
 

and
 

Control,
 

2023,
 

21(10):
 

72-84.
 

(in
 

Chi-

nese)
 

[14] ORLANDO
 

D,
 

GONÇALVES
 

P
 

B,
 

REGA
 

G,
 

et
 

al.
 

Influence
 

of
 

transient
 

escape
 

and
 

added
 

load
 

noise
 

on
 

the
 

dynamic
 

integrity
 

of
 

multistable
 

systems
 

[J].
 

Interna-

tional
 

Journal
 

of
 

Non-Linear
 

Mechanics,
 

2019,
 

109:
 

140-154.
 

[15] ZAYTSEV
 

P,
 

CNOPS
 

T,
 

DAVID
 

REMY
 

C.
 

A
 

de-

tailed
 

look
 

at
 

the
 

SLIP
 

model
 

dynamics:
 

bifurcations,
 

chaotic
 

behavior,
 

and
 

fractal
 

basins
 

of
 

attraction
 

[J].
 

Journal
 

of
 

Computational
 

and
 

Nonlinear
 

Dynamics,
 

2019,
 

14(8):
 

081002.
 

41


