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摘要 结构动力特性的相关理论与原理,被越来越广泛地应用于各个工程领域,但对其基本概念与基本原

理的理解与掌握仍然需要进一步推进.一些基本概念看似很基础也很完善,但没有准确理解与掌握,便难以

科学地运用到工程实践中.基于理论分析与推导证明对结构固有频率与圆频率,结构第1阶固有频率与基

频,多自由度系统结构阻尼与模态阻尼比,固有频率在桥梁技术状态评估中的运用,Rayleigh商之注释等结

构动力学中的常见问题进行了深入分析与辨析,明晰了一些基本概念,使结构动力学理论体系更为完备.
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Abstract The
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dynamic
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dynamics
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引言
  

随着科学技术的进步,工程结构正朝着大型化

与轻型化的方向发展.在保证工程结构强度、刚度

及稳定性的同时,对结构舒适性与可靠性的要求也

越来越高.因此,涉及结构动力特性的相关理论与
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原理,被越来越广泛地应用于各个工程领域,特别

是在航天航空、机械工程、土木工程、水利工程、船
舶海洋工程、交通运输工程等学科.

相对而言,《结构动力学》的理论体系比较完

备,其建立在牛顿力学基础上的基本概念与基本原

理也比较成熟.由于涉及较多的高等数学知识,技
术层面上对其应用者具有较高的要求.特别是随着

“结构试验模态分析”理论的发展与工程运用,进一

步拓展了《结构动力学》的内涵与应用范畴.然而,

对于相当多从事工程结构的科技工作者、以及相关

的工程技术人员,乃至高等院校的教师与研究生,

尽管曾系统地接受过《结构动力学》课程的训练,但
对其基本概念与基本原理的理解与掌握可谓是不

深不透,对其运用也只能是生搬硬套;更有甚者只

是知晓一些专业名词,从而给自己的工作和学习带

来了诸多的不便与困惑.
本文共挑选了六个《结构动力学》中被忽视的

有关基本概念、基本原理与工程应用问题给予了说

明与辨析,旨在抛砖引玉,唤醒相关科技工作者对

基础理论知识的重视,更加完善和充实结构动力学

的内容.只有准确理解并掌握结构动力学的基本概

念与基本原理,才可能避免在工程应用中犯错误.
尽管本文中的有些内容(如结构“基频”概念的辨

析)似乎看起来太过基础,但也更容易被忽视.

1 结构固有频率与圆频率

1.1 问题的提出
  

在研究工程结构的振动问题中,频率是一个重

要的物理量,一般用f(frequency)来表示,其表征

结构振动(通过平衡位置)快慢的程度,即结构单位

时间内振动的次数,单位是次/秒或赫兹(Hz).与
此相对应还有另外一个物理量———圆频率,习惯用

ω 来表示,其单位是弧度/秒(rad/s,或1/s).鉴于

函数的周期性,频率f 与圆频率ω 之间满足关系

式ω=2π/T=2πf,其中T 称为周期(period),单
位是秒(s),表示完成一次全振动所需的时间.于
是,有些教科书上便定义圆频率ω 表示2π个单位

时间内结构振动的次数[1-3].从频率f 与圆频率ω
之间的相互关系式上乍一看,是这么一回事.然而,

对圆频率物理内涵(2π个单位时间内结构振动的次

数)的如此诠释,其严谨性与科学性不免让人质疑.

1.2 旋转矢量与圆频率
  

对于图1(a)所示的单自由度(SDOF)系统,物
块A质量为m,弹性元件线刚度为k;相对于静平

衡位置,物块A沿铅垂方向作直线往复运动

y=Asin(ωt+φ0) (1)

式中:A 为振幅,ω 为圆频率,φ0 为初相位.
  

同理,对于图1(b)所示的单自由度系统,相对

于静平衡位置,物块 A沿水平方向作直线往复运

动

x=Acos(ωt+φ0) (2)
  

在式(1)和式(2)中,其圆频率为

ω= k/m (3)
  

由式(3)可知:圆频率ω 取决于系统质量m 与

线刚度k,其表征了系统的固有特性.那么,对于做

直线往复运动的质点,理应用频率来表示其振动的

快慢(单位时间内振动的次数).为什么式(1)和式

(2)中的ω 被称为圆频率呢?
     

为此,引入图2所示的旋转矢量OA,其绕O
点以匀角速度ω 逆时针方向转动.则复平面内A
点的运动方程为

z→=xi
→
+yj

→ (4)

图1 单自由度系统的运动:(a)竖直运动;(b)水平运动

Fig.1 The
 

vibration
 

of
 

single-degree-of-freedom
 

system:
 

(a)Vertical
 

vibration;
  

(b)Horizontal
 

vibration

图2 旋转矢量在复平面内的匀速转动

Fig.2 The
 

rotation
 

vector
 

rotates
 

at
 

a
 

uniform
 

angular
 

speed
 

in
 

the
 

complex
 

plane
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则有

Re(z→)=x=Acos(ωt+φ0)

Im(z→)=y=Asin(ωt+φ0) (5)
  

将式(5)与式(1)、式(2)比较可知:两者表达式

完全相同.所以,以匀角速度ω 绕O 点旋转的矢量

OA,可用来描述质点A 沿着直线的往复运动.那
么,表征矢量OA 绕O 点旋转快慢的匀角速度———

圆频率,亦可用来描述质点A 沿着直线往复运动

的快慢.

1.3 频率与圆频率之比较
  

比较质点A 沿着直线的往复运动与矢量OA
绕着O 点的匀角速度转动,根据各自的特点,从而

可正确理解质点A 的振动频率与矢量OA 绕O 点

旋转的圆频率的物理内涵.
  

(1)质点A 沿着直线的往复运动与旋转矢量

OA 的定轴匀速转动,这是两个完全不同的力学模

型.但由式(5)可知,两者具有相同的数学表达式.
特别要指出,复数表达式的引入,给其数学处理带

来了极大的便利.
  

(2)质点A 作直线运动,其运动的快慢用速度

v→ 来表示(瞬时值);而质点A 单位时间内直线往

复运动(振荡)的次数,用频率f 来表示.
  

(3)旋转矢量OA 作定轴匀速转动,其转动的

快慢用角速度ω 来表示(瞬时值);又由于其是一

定值,亦可用来表征旋转矢量OA 单位时间内转动

的转数r=ω/2π,单位是转/秒,故角速度ω 被称为

圆频率.
  

(4)由式(3),利用质量m 与线刚度k 可求得

圆频率ω,单位是弧度/秒(rad/s),进而可获得频率

f=ω/2π.
  

(5)有些教科书上定义圆频率ω 表示2π个单

位时间内结构振动的次数,其在物理概念与力学内

涵上是不准确的.

2 结构第1阶固有频率与基频之辨析

2.1 问题的提出
  

任一受激励力作用的线弹性结构,对其时域响

应信号进行频谱分析,通常可识别出结构的低阶固

有频率.目前,一些教科书上习惯称呼结构的第1
阶固有频率(First

 

order
 

frequency)为基频、基本频

率或第一频率[3-5].且在结构设计中,第1阶固有频

率常常被作为评价结构技术状态的重要参数[6].由
振型叠加原理可知,结构的响应是结构各阶模态加

权叠加的结果;理论上,结构各阶模态的地位是等

同.因此,将结构的第1阶固有频率另行称呼为基

频、基本频率或第一频率等,客观上应该具有其他

目的与意义.事实上,对于很多结构工程师来说,这
种潜在的强化作用一直顽固地存在着,并在结构动

力分析或结构动态试验中得到了体现.

2.2 周期信号的基频
  

对于周期信号fT(t),若在区间[-T/2,T/2]

上满足狄利克雷(Dirichlet)条件,则可展开成傅里

叶(Fourier)级数

fT(t)=
a0

2+∑
�

j=1

(ajcosjωt+bjsinjωt)(6)

且有

a0=
2
T∫

T
2

-
T
2
fT(t)dt

aj =
2
T∫

T
2

-
T
2
fT(t)cosjωtdt (j=1,2,…)

bj =
2
T∫

T
2

-
T
2
fT(t)sinjωtdt (j=1,2,…)(7)

式中:aj 与bj 为傅里叶系数;ω1=ω=2π/T 为基

频,且ωj=jω1 为倍频.
  

在式(6)中,{1,cosωt,sinωt,cos2ωt,sin2ωt,
…,cosjωt,sinjωt,…}称为傅里叶基,其正交性可

表示为

∫
+

T
2

-
T
2

siniωtcosjωtdt=
1 (i=j)

0 (i≠j) 
∫

+
T
2

-
T
2

siniωtsinjωtdt=
1 (i=j)

0 (i≠j) (8)

由傅里叶系数aj 与bj 构成了周期信号fT(t)
的频谱图(一系列离散谱);一旦识别其基频ω1=ω,
其他各阶频率ωj=jω 亦已获得.所以,在信号分析

中周期信号的基频ω具有特别重要的理论意义.
若T →+∞,则周期信号fT(t)拓展为f(t),

此时的傅里叶级数转化为傅里叶积分,非周期信号

的离散频谱图便将转化为连续谱.

2.3 结构第1阶固有频率之辨
  

了解了信号分析中周期信号基频的概念之后,

再来看看结构的第1阶固有频率.在结构动力学教
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科书中,将结构第1阶固有频率称呼为基频、基本

频率或第1频率等,其客观上夸大或强化了第1阶

模态对结构响应的贡献与作用,其是否科学合理,

可以从以下三个方面给予理解[7]:

(1)式(6)表明:fT(t)是在傅里叶基{1,cosωt,

sinωt,cos2ωt,sin2ωt,…}上的展开,一旦识别出第

1阶频率ω1(ω1=ω),则其他各阶频率ωj=jω(j
=1,2,…)均可获得.所以,周期信号第1阶频率称

呼为基频,具有特别的内涵,其合理性无可厚非.
  

(2)由振型叠加原理,n 自由度结构的响应表

示为

u(x,y,z,t)=∑
n

j=1
ηj(t){φ(x,y,z)}j (9)

式中:{φ(x,y,z)}j 为结构第j阶位移模态(模态

基),ηj(t)为第j阶模态坐标(或模态参与因子).
  

结构的第j阶固有频率ωj,对应相应的特征向

量{φ}j,其关于质量矩阵和刚度矩阵加权正交(由
基的性质所决定).式(9)表明:结构的响应u(x,

y,z,t)是在模态基{φ}j(j=1,2,…,n)上的展开,
各阶模态的贡献取决于模态参与因子ηj(t).若将

结构各阶固有频率按照从小到大的顺序依次排列

在一 起,就 构 成 了 结 构 各 阶 固 有 频 率 的 阶

(Order),理论上各阶模态的地位彼此是等同的.
与周期信号fT(t)的频谱分析不同,即使识别了结

构的第1阶固有频率ω1,仍然无法获取结构的第j
阶固有频率ωj

 (j=1,2,…,n),因为ωj ≠jω1.所

以,这种类似于周期信号的做法,将结构第1阶固

有频率冠以基频、基本频率或第1频率等称呼,没
有任何的理论和工程意义.

(3)按照中文用语的习惯去理解,如果将结构的

第1阶固有频率称之为第1频率,那么在结构动力

分析中第1阶模态(对应第1频率)一定会比第2阶

模态(对应第2频率)更加重要,其客观上夸大或强

化了结构第1阶模态对响应的贡献与作用.事实上,

很多结构工程师在结构动力分析、结构设计或结构

动态试验中,特别关注结构的第1阶模态,或者仅关

注结构的第1阶模态,这是一种错误的导向.
由本论题辨析可知:将结构第1阶固有频率冠

以基频、基本频率或第1频率等称呼,没有任何的

理论和工程意义;恰恰相反,制造了结构动力学概

念上的混乱,客观上夸大或强化了结构第1阶模态

对响应的贡献与作用,是一种错误的导向.其根本

原因是缺乏对结构固有频率物理内涵的真正理解.

3 多自由度系统结构阻尼与模态阻尼比

3.1 问题的提出
  

结构阻尼的作用机理十分复杂,常用的阻尼模

型有:结构粘性阻尼模型、结构位移阻尼模型和结

构干摩擦阻尼模型等.尽管黏滞阻尼模型与实际工

程结构之间还存在着一些差异,但基本能反映结构

动力响应的变化规律,且给结构的动力响应分析带

来了极大的便利,因而得到了广泛的应用[8,9].为
此,特别定义了结构阻尼比来定量地表征结构阻尼

的强弱程度.相关规范对常用工程材料的结构阻尼

比给定了一个取值范围,如钢结构为(0.01~0.03)、
木材结构为(0.04)、混凝土结构为(0.03~0.08)
等[10,11].乍一看来,其似乎特别科学严谨.那么,如
何理解相关规范中常用工程材料结构阻尼比的取

值呢?

3.2 结构模态阻尼比的识别
  

目前,识别结构模态阻尼比的试验方法有两

类:一类是利用系统频响函数识别结构模态阻尼比

的频率域方法:如半功率带宽法、放大因子法、SFD
法等;另外一类是利用时程响应信号识别结构模态

阻尼比的时间域方法:如对数衰减法、阶跃响应法

和ITD法等[12-15].由结构动力学理论可知:结构在

振动过程中其响应表现为多阶模态的叠加;各阶模

态的阻尼是不相同的,各阶模态的阻尼比自然也是

不相同.当前试验模态分析技术均识别的是结构的

模态阻尼比.

3.3 小结
  

所以,对于单自由度系统,可以说识别的是系

统的阻尼比;而对于多自由度系统,只能说识别的

是系统的模态阻尼比.严格意义下,当前相关规范

对常用工程材料的结构阻尼比给定了一个取值范

围,是具有针对性的,但也有其局限性,其提法概念

上是不严谨的.

4 固有频率在桥梁技术状态评估中的运用

与质疑

4.1 桥梁结构技术状态评估
  

在桥梁结构的动载试验中,结构固有频率被用

来评价其技术状态[6].一般情况下,结构的阻尼均
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比较小,因此在结构动力特性的计算模态分析中往

往不计结构阻尼以获取结构的振型和无阻尼固有

频率ωnj(j=1,2,…);而在结构的动态特性的试验

中,获取的却是结构有阻尼固有频率ωdj(j=1,2,
…).理论上有[3,9,11]

ωdj =ωnj 1-ζ2j <ωnj (j=1,2,…)(10)
式中:ζj 为结构第j阶模态阻尼比.

  

文献[6]中规定,通过桥梁结构的计算固有频

率与实测固有频率之比,可用来评价桥梁结构整体

性能和技术状况,见表1.

表1 实测固有频率评定桥梁结构技术状态标准

Table
 

1 Standard
 

for
 

evaluating
 

the
 

technical
 

status
 

of
 

bridge
 

structures
 

by
 

measured
 

natural
 

frequencies

桥梁部件

评定标度

桥梁上部结构 桥梁下部结构

ωdj/ωnj 技术状况 ωdj/ωnj 技术状况

1 ≥1.10 良好 ≥1.20 良好

2 1.00~1.10 较好 1.00~1.20 较好

3 0.90~1.00 较差 0.95~1.00 较差

4 0.75~0.90 差 0.80~0.95 差

5 0.75以下 危险 0.80以下 危险

  备注:1.对缺少资料的中小跨径钢筋混凝土或预应力混凝土桥梁,可按公式ωd1=2π×90.6l
-0.923 计算上构第1阶竖弯自振频率;

2.未做检测的构件其评定标度值取1.
 

  表1给定的桥梁结构技术状态标准理解为:

ωdj=ωnj 表明实际构造物的刚度大于设计值,因而

桥梁结构的质量是可靠的.
  

4.2 质疑
  

显然,表1有关结论有悖于结构动力学理论,
其潜在掩盖了另外一种事实:在桥梁结构实测固有

频率正确的前提下,所建桥梁结构的有限元模型有

误(边界条件给定的不合理或材料物理参数取值不

合理等).而更重要的是:以此桥梁结构有限元模型

而进行的结构静/动力计算结果的正确性与可靠性

值得质疑[16,17].但工程中由于阻尼较小,总体计算

误差在工程容许的范围内是可以接受的.

5 Rayleigh商之注释

5.1 Rayleigh商
  

对于长为l、抗弯刚度为EI、单位长度质量为

m- 的匀质等截面梁,其横向自由振动方程为[9,11]

y(x,t)=Y(x)sin(ωt+α) (11)
式中:Y(x)为位移幅值,ω为固有频率,α为初相位.

梁结构第j阶固有频率ωj 可表示为

ω2
j =
∫

l

0
EI[Y″

j(x)]2dx

∫
l

0
m-[Yj(x)]2dx

(12)

式中:Yj(x)为第j阶位移模态,Y″
j(x)为第j阶曲

率模态.
  

那么,对于任一满足位移边界条件(DBC)的位

移函数Y(x),Rayleigh商定义为

ω2=R(Y)=
∫

l

0
EI[Y″(x)]2dx

∫
l

0
m-[Y(x)]2dx

(13)
  

由式(13)可知,Rayleigh商为Y(x)的函数.

5.2 几点注释
  

从结构模态能量的观点考虑,Rayleigh商给出

了结构某阶固有频率的近似求解方法.鉴于式(13)
说明如下:

  

(1)Rayleigh商R(Y)应视为一整体,有些教

材上称之为Rayleigh比[3],是欠考虑的;
  

(2)Rayleigh商R(Y)为一泛函,是一系列满

足边界条件的的Y(x)函数;δ[R(Y)]=0取驻立

值,为式(13)的最优解;
  

(3)Rayleigh商之值ω2 大于或等于结构固有

频率的真实值.
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