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Abstract A linear parameter-varying (LPV) robust attitude control method based on output feedback is
proposed to solve the attitude control problem of space unmanned platform carrying rotating flexible so-
lar panels. Firstly, the LPV model of attitude dynamics is established by taking solar panel angle as
scheduling parameter. Taking the upper limit of the quadratic control index as the optimization index,
the LPV output feedback controller is obtained by linear matrix inequality (LLMI) method considering the
limited input and change rate of the attitude control signal and the difficult observation of the flexible vi-
bration in actual working conditions. Flexible vibration information is not needed by obtained controller.
Platform attitude angles and attitude angular velocities are taken as feedback signals, which can maintain
the robust stability of platform attitude and effectively suppress the flexible vibration of the windsurfing
board under the condition that the windsurfing angle changes in a wide range, and has good parameter a-
daptability and anti-interference ability. Finally, the proposed LPV attitude control method for un-

manned space platform is verified by numerical method.
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Fig. 1 Definition of space unmanned platform coordinate system
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