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摘要 对于实际环境中的宽频弱激励振动能量,传统的压电俘能结构效率不高.本文针对这种弱基础激励,

为了提高俘能效率,设计了一种树形分叉倒立梁结构,梁的根部粘贴了压电材料,结构在基础激励下可以产

生大幅振动与输出.首先分析了结构的振动特性,然后开展了实验研究.由研究结果可以看出,在水平宽频

随机激励下,梁的振动可以产生比较大的电能输出.其次,在此基础上对结构进行了改进,在中梁自由端增

加了质量块,利用其惯性力激励俘能器产生更大的输出.实验结果表明,改进后的结构在弱随机激励下电能

输出可以大幅提高.当激励功率谱密度PSD为0.045g2/Hz时,在尺寸为20mm×10mm×2mm的压电片

上,电能输出的RMS功率可以达到61.72μW,是未改进结构的2.32倍.
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Abstract In
 

harvesting
 

wideband
 

and
 

weak
 

vibration
 

energy
 

in
 

practical
 

environments,
 

classical
 

piezoe-
lectric

 

energy
 

harvesters
 

often
 

can􀆶t
 

give
 

a
 

high
 

electric
 

output.
 

To
 

overcome
 

this
 

limitation,
 

we
 

intro-
duce

 

a
 

novel
 

design
 

of
 

tree-like
 

tri-fork
 

vibration
 

energy
 

harvester
 

with
 

piezoelectric
 

patches
 

bonded
 

to
 

the
 

clamped
 

end.
 

Under
 

base
 

excitations,
 

the
 

harvester
 

is
 

expected
 

to
 

be
 

able
 

to
 

produce
 

large
 

ampli-
tudes

 

and
 

electric
 

outputs.
 

Firstly,
 

the
 

mathematical
 

model
 

is
 

established,
 

and
 

corresponding
 

simula-
tions

 

are
 

conducted.
 

Then,
 

the
 

prototype
 

was
 

fabricated
 

and
 

validation
 

experiments
 

are
 

carried
 

out.
 

The
 

experimental
 

results
 

prove
 

that
 

under
 

wideband
 

stochastic
 

excitations,
 

the
 

harvester
 

can
 

oscillate
 

with
 

a
 

large
 

amplitude
 

and
 

produce
 

large
 

output.
 

Based
 

on
 

the
 

results,
 

we
 

upgrade
 

the
 

structure
 

by
 

adding
 

a
 

mass
 

on
 

the
 

tip
 

of
 

middle
 

beam,
 

the
 

inertial
 

force
 

produced
 

by
 

the
 

tip
 

mass
 

under
 

excitation
 

can
 

drive
 

the
 

tri-fork
 

beam
 

to
 

generate
 

large
 

vibration
 

and
 

output.
 

Corresponding
 

experiments
 

were
 

carried
 

out
 

to
 

ver-
ify

 

the
 

improved
 

structure.
 

The
 

results
 

show
 

that
 

with
 

the
 

change
 

in
 

structure,
 

the
 

electric
 

output
 

increa-
ses

 

dramatically
 

for
 

the
 

same
 

excitation
 

intensity.
 

For
 

the
 

stochastic
 

excitation
 

of
 

PSD=0.045g2/Hz,
 

across
 

a
 

piezoelectric
 

patch
 

featuring
 

the
 

size
 

of
 

20mm×10mm×2mm,
 

the
 

structure
 

with
 

the
 

middle
 

tip
 

mass
 

can
 

produce
 

an
 

output
 

of
 

RMS
 

power
 

of
 

61.72μW,
 

about
 

2.32
 

times
 

that
 

without
 

the
 

tip
 

mass.
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引言
  

物联网(IoT)的实现,要求建立由大量无线节

点传感器组成的传感器网络.对于每个微型无线传

感器,需要一种稳定、廉价、绿色的能源,以保证其

不间断地工作.针对这个需求,出现了环境振动能

量俘获技术并显示出很好的发展潜力.
振动能量俘获通常采用压电材料与梁结构,这

方面的研究出现了很多有实际意义的成果.Reddy
等[1]通过在悬臂梁内部开三角形空腔来提高压电

梁的输出电压,实验结果表明带有三角形空腔的压

电梁的电压输出提高了108%.Pradeesh等[2]分析

了附加质量的大小、形状、位置、尺寸等对于压电悬

臂梁俘能效率的影响.Yang等[3]提出了一种弧形

压电悬臂梁俘能器,其固定端为一段弧形压电梁.
实验结果显示弧形压电梁产生的输出功率可以达

到直形梁的4.25倍.Li等[4]在梁上开了不同形状

与长度的槽,然后用转轴将其连接起来.这种带转

轴的压电梁的输出功率是原来压电梁的7.3倍.

Wang等[5]设计了一种折线梯形压电梁,用来收集

低频的振动能量.实验结果发现这种结构具有较宽

的工作频带,最高输出功率可以达到217μW.郑友

成等[6]提出了一种具有非对称、变势能阱的三稳态

压电振动能量采集器,由一个末端带磁铁的压电悬

臂梁以及一对可随弹簧拉伸和压缩而变动的外部

磁铁构成.研究发现在低振幅激励下,非对称变势

阱比对称势阱有更宽的频带和更高的采集效率.张

旭辉等[7]提出了一种直梁与拱形梁结合的双稳态

压电振动俘能结构,研究发现组合其幅频响应存在

跳跃、多解现象,结果证明改变磁铁间距及激励幅

值可调节不稳定区域范围.Du等[8]针对旋转激励,

从压电梁结构出发,提出了一种屈曲的双稳态俘能

器.实验研究表明这种结构在低频范围1.0~

9.0Hz范围内,具有很好的输出特性.Huang等[9]

设计了一种L形的自适应压电梁俘能器,实验结

果表明这种俘能器可以通过滑块定位自动适应外

激励频率,相比传统的L形压电梁,新结构的工作

频带是其3.5倍.石朝成等[10]研究了非线性磁力

耦合的双悬臂梁压电振动能量俘能器,通过非线性

磁力将两压电悬臂梁连接起来,可以获取两个电压

峰值,从而提高了单悬臂梁式俘能器的电压输出性

能,同时也扩宽了响应频带.Man等[11]提出了一种

混合的三稳态压电梁俘能器,他们研究了参数的影

响,发现其可以在弱激励下进行阱间运动,从而得

到较大的电能输出.Febbo等[12]设计了一种双梁

结构的压电俘能器,并针对其提出了一套建模方

法,开展了实验验证,证明了分析与优化方法是正

确的.陈丽华等[13]对微型双稳态板式压电俘能器

进行了研究,发现其在不同的激振频率下存在不同

的变形状态,且存在多态转换交替出现的现象.
Rosso等[14]设计了一种由磁铁运动驱动悬臂压电

梁振动,进而产生输出的俘能器.研究结果表明此

结构具有升频功能.陈婷婷等[15]提出了一种准零

刚度驱动式压电振动能量俘能器,
 

可将环境、人体

及部分机械设备的低频振动能量高效地转化为电

能.当频率为2.5Hz
 

时,
 

准零刚度压电振动能量俘

能器中一个能量转化单元的峰值电压达到25V.
Fang等[16]由鸟类的拍动翅膀飞行现象出发,设计

了一种模仿这种运动的压电-电磁俘能器.实验结

果显示对于低频激励,俘能器的输出可以达到

12.2mW.Li等[17]在一组屈曲梁上,安装了质量块

与压电悬臂梁,此结构可以实现多个频率的升频,

因此可以提高振动能量的俘能效率.Xiang[18]研究

了摩擦激励下的压电梁俘能效果.研究结果显示,

提出的摩擦俘能器可以有效地将摩擦振动转换为

电能.He等[19]提出了一个两自由度的多稳态折梁

结构,同时带有位移限制结构.每个梁都可以看成

一个带末端质量的悬臂梁结构,压电层粘贴在附属

梁上.此结构可以拓宽工作频带,并提高输出峰值.
自然环境中的振动能量,一般振动幅值较小,同

时频带较宽,呈现弱随机激励的特点.在这种激励

下,传统的俘能器很难在宽频带范围内一直保持大

幅的电能输出,因而转换效率需要进一步提高.针对

这一问题,本文提出了一种树形分叉的倒立压电梁

结构,并对其进行了改进.与传统倒立梁型振动能量

俘能器相比,树形分叉结构在受到水平基础激励时,

力系简化时会产生一个附加力偶,使得结构产生更

大的振幅与变形.因此树形分叉俘能结构在随机弱

激励下,能够产生比较大的电压与功率输出.

1 树形分叉压电俘能结构仿真
  

图1为提出的树形分叉压电俘能结构示意图.
该俘能结构由主梁以及靠近主梁自由端左右对称

的两根小梁组成.压电片贴于主梁固定端根部.激
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励方式为水平方向随机激励.
  

仿真及实验中采用的梁参数相同,树形分叉梁

的材料为不锈钢,厚度为0.5mm,宽度为10mm,倒
立梁长度为140mm,两个叉形梁的长度相同,为

60mm;压电材料为PZT
 

5H,尺寸为20mm×10mm
×2mm.对该俘能结构进行模态分析,由于实际环境

中的振动频率通常都比较低,所以分析了其前三阶

模态,前三阶模态如图2所示.其第1阶固有频率为

7.751Hz,第2阶为51.958Hz,第3阶为119.500Hz.

图1 树形分叉压电俘能结构示意图

Fig.1 Tree-shaped
 

fork
 

piezoelectric
 

vibration
 

energy
 

harvesting
 

structure

图2 树形分叉压电结构前3阶振型

Fig.2 The
 

first
 

three
 

modes
 

of
 

tree-shaped
 

fork
 

piezoelectric
 

structure
  

接下来对于建立的模型,进行了仿真计算,分别计

算了其在激励功率谱密度 PSD(Power
 

Spectral
 

Density)为0.02g2/Hz与0.04g2/Hz随机激励下

的输出电压,分别如图3与图4所示.0.02g2/Hz激

励下电压的均方根值(Root
 

Mean
 

Square,
 

RMS)

VRMS=6.3V,0.04g2/Hz激励下的VRMS=7.4V.

图3 PSD=0.02g2/Hz激励下的输出

Fig.3 The
 

output
 

for
 

PSD=0.02g2/Hz

图4 PSD=0.04g2/Hz激励下的输出

Fig.4 The
 

output
 

for
 

PSD=0.04g2/Hz

2 树形分叉结构俘能实验
  

对于提出的树形分叉压电俘能结构,设计了实

验平台,加工了试件,进行了实验研究.实验装置如
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图5所示,树形分叉梁的根部,用夹具固定在振动

台外伸平面上.在梁的根部,粘贴了尺寸为20×10
×2mm3 的PZT

 

5H 压电片,激励由小型振动台

(东菱
 

ESD-100)提供,采用水平激励.梁的位移采

用激光测距仪(Panasonic
 

HG-C1100)测量,采集的

电压通过动态应变仪(东华
 

DH5922D)输入到计算

机.为了真实反映结构对于宽频随机激励的能量收

集效果,激励设定为带限白噪声基础激励,激励的

强度逐渐增加,具体的激励功率谱密度PSD分别为

0.010g2/Hz、0.015g2/Hz、0.025g2/Hz、0.035g2/Hz、

0.040g2/Hz、0.045g2/Hz,频带为5Hz~55Hz.压
电片外接电路中,电阻为470kΩ.

图5 树形分叉俘能结构试件

Fig.5 Prototype
 

of
 

tree-shaped
 

fork
 

piezoelectric
 

vibration
 

energy
 

harvesting
  

实验的结果如图6所示,可以看出,随着激励

强度的增加,输出的电压幅值也随之增加.具体地,

在PSD=0.010g2/Hz(aRMS=0.548g),输出的电

压时域信号如图6(a)所示,此时的VRMS=2.5V;

当PSD=0.015g2/Hz(aRMS=0.671g)时,输出的

电压如图6(b)所示,此时的VRMS=2.80V;随着激

励进 一 步 增 加,当 PSD=0.025g2/Hz(aRMS=
0.866g)时,俘能结构的输出电压如图6(c)所示,

此时的VRMS=3.14V;当PSD=0.035g2/Hz(aRMS

=1.025g)时,电压的输出入图6(d)所示,此时

图6 实验中不同激励强度下树形分叉俘能器输出

Fig.6 The
 

tree-shaped
 

fork
 

harvester􀆶s
 

output
 

voltages
 

for
 

different
 

excitation
 

densities
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VRMS=3.38V;接着,进一步增大随机激励强度,在

PSD=0.040g2/Hz(aRMS=1.095g)时,输出的电

压如图6(e)所示,此时的VRMS=3.46V;最后,当

PSD=0.045g2/Hz(aRMS=1.162g)时,俘能器输

出的电压如图6(f)
 

所示,VRMS 达到3.54V.
由于电路中接有一个470kΩ的定值电阻,因

此可以得到瞬时的输出功率,对应不同的激励强

度,得到的RMS输出功率的变化如图7所示.可以

看出,随着激励强度的增加,输出功率快速增加,在
激励强度PSD=0.045g2/Hz时(aRMS=1.162g),
输出的RMS功率为26.6μW.

图7 树形分叉俘能器输出功率随激励强度变化

Fig.7 The
 

output
 

power
 

of
 

tree-shaped
 

fork
 

harvester
 

versus
 

excitation
 

intensity

3 树形分叉结构改进及实验验证
  

为了增大树形分叉结构在基础激励下的振动

响应,进而输出更大的电压与功率,在分叉结构的

中间梁自由端安装了质量块,质量块为2块磁铁,

每块重2.5g.这样,在基础激励下,质量块产生的

惯性力,会激励结构产生大的振幅与应变,基于压

电效应,压电片可以输出更多的电能.为了验证设

计的有效性,对带质量的树形分叉俘能结构进行了

验证实验.实验装置如图8所示.激励仍然采用随

机带 限 白 噪 声 激 励,频 带 宽 度 为5Hz~55Hz,

PSD为0.010g2/Hz、0.015g2/Hz、0.025g2/Hz、

图8 带质量树形分叉俘能结构实验装置
Fig.8 The

 

prototype
 

of
 

tree-shaped
 

fork
 

harvester
 

with
 

tip
 

mass

0.035g2/Hz、0.040g2/Hz、0.045g2/Hz,所得的结

果如图9所示.
可以看出,随着激励强度的增加,响应中的高

电压信号逐渐密集,显示输出的电能不断增加.在

PSD=
 

0.010g2/Hz时,带质量的树形分叉俘能器

输出电压如图9(a)所示,此时的VRMS=3.09V;增

加激励到PSD=0.015g2/Hz,输出的电压如图9
(b)所示,此时的VRMS 达到3.40V;然后,接着增大

激 励强度,在PSD=0.025g2/Hz时,输出的电压

26



第11期 邓王蒸等:树形分叉压电振动俘能结构设计及实验验证

图9 改进的带质量树形分叉俘能器输出

Fig.9 The
 

output
 

voltages
 

of
 

the
 

improved
 

tree-shaped
 

fork
 

harvester
 

with
 

tip
 

mass

信号如图9(c)所示,VRMS=4.08V,可以看出,电压

快速增大;进一步增大激励,在PSD=0.035g2/Hz
时,输出电压如图9(d)所示,此时VRMS=4.69V;

此后,当PSD增大到0.040g2/Hz时,电压信号如

图9(e)所示,VRMS=4.69V;最后,当 PSD 达到

0.045g2/Hz时,输出的电压如图9(f)所示,此时

VRMS 达到4.9703V.
  

由于电路中接有定值电阻,因此可以得到俘能器

的RMS输出功率,如图10所示.可以看出,改进后的

带质量树形分叉俘能器,随着激励强度的增加,输出

电压快速增大,因此输出的功率也快速增大,在

0.045g2/Hz激励下,输出的 RMS功率可以达到

61.72μW,是原树形分叉压电俘能器输出的2.32倍.
  

图10 带质量树形分叉俘能器输出功率随激励强度变化

Fig.10 The
 

output
 

power
 

of
 

the
 

improved
 

tree-shaped
 

fork
 

harvester
 

versus
 

excitation
 

intensity

为了显示改进后的带质量树形分叉梁结构对随机

振动能量的俘能效果,对于两个俘能器的输出

RMS电压,进行了对比,如图11所示.可以看出,

在各个激励强度下,改进后的俘能结构输出均有明

显提高.特别是,随着激励强度的增加,提高的幅度

也越来越明显,证明了改进设计是有效的.

图11 改进俘能器与原俘能器输出对比

Fig.11 Comparison
 

between
 

the
 

improved
 

and
 

original
 

tree-shaped
 

fork
 

vibration
 

energy
 

harvester

4 结论
  

本文针对环境中存在的弱随机宽频基础激励,

设计了一种树形分叉压电俘能结构,建立了其有限

元模型,并进行了仿真.为了验证其有效性,开展了

实验研究.基于实验研究结果,对树形分叉结构进

行了改进,在中间梁自由端增加末端质量,形成了

带质量的树形分叉俘能器,对改进的俘能器也进行

了实验验证.由理论分析与实验结果,可以得到以

下结论:
 

(1)
 

树形分叉梁压电俘能结构在弱随机激励

下具有有效性;
 

(2)
 

树形分叉俘能结构在宽频弱随机激励下,

可以产生较大的电压与功率输出;
 

(3)
 

改进后的俘能器性能得到很大提高,宽频

弱随机激励下,可以输出更多的电能.当激励强度

PSD=0.045g2/Hz时,改进结构输出的电能RMS
功率可以达到原结构的2.32倍.
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