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Intermittent and Crisis Dynamics of Positive and Negative Stiffness

Parallel Suspension System "

Shi Shengjian Liu Run  Su Han Zhang Wen Yue Yuan'

(School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu 610031, China)

Abstract Based on a stiffness system consisting of an air spring and a negative stiffness spring connected
in parallel, a single-degree-of-freedom 1/4 vehicle suspension model was established. The continuation
shooting method was applied to track the periodic solutions of the suspension system, and their stability
was determined by the Floquet theory. The basin of the system were depicted using the principle of cell
mapping, and the evolution of the basin under different parameters was analyzed. The results show that
the suspension system exhibits local bifurcation behaviors such as saddle-node bifurcation and period-
doubling bifurcation under periodic excitation. The study reveals that the transition from periodic solu-
tions to chaos in the system is mainly associated with I-type intermittent related to saddle-node bifurca-
tion . When the unstable periodic orbit collides with the chaotic attractor, the system will produce dy-
namic behavior such as boundary crisis and internal crisis, which will cause the chaotic attractor to disap-

pear and become larger.
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Table 1 Floquet multipliers for each point in region A
Fixed point  Floquet multiplier Norm of floquet multiplier Nature
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PD, —0.025 261 138 3 inside the unit circle Period-doubling bifurcation point
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PHTESE « =0. 203 222 I} 28 4 0 i % 9] 4 41
W R U ATAT RN S SR R Z I A
[ei) 1) Jo S 2l I

W& 2B BN AR E R BLE UP3 &5k
TE «=0.203 213 &L 5B MW 5]+ CA, & 4 Al &,

RGAE A % A D B (BO) L 51 R IR TEW 5] F
CA, MR I 2508 10w o A A A 25 19 o1 400 — fig
SP2. fiE UP3 M4k 22 i 41 , 7E « = 0. 203 072 b,
UP3 SR 51 7 CA. & A flf 18, N #R % (10)
AL KA BRI 51 F CA. BARARMMN
R EEAS IR 5T CA, L& 9(h) JE 9(e) h i
G S, ST CA, M5, B (b) KR
MG CA, 5 UP3 Rl FTIRA , Bl (o) Fm A 5]
T CA, 50 FW 580 A AR ERE UP3 &
AR L 3 BOR Gk AR (10 ¥ W 5]
CA, 2 R E 9 (D Frn iR ik 5] F CA,, & &k
X3S, S Hg 5],

4 it

8 A R IE BRI A Y 2y 2 — R G
BARGE R G S IE NI BE Y 28 050 6N B2
SRR LA SRR RHLE BT 1 B AR T A T B e S A
JEBEU T B S5 N RGN Bh T2 E Rk S
U458

(D3l KA S H o BUEBA I RGBS H0R
ARCERF B WD IS o 4 S A 3T 0 IO 300 0 AR 4 rh X
JEL 401 A R AT A 130 B3 OF RS Floquet BAE I Flo-
quet 55 LA [ 14 T XA BT R GE A $ 4 oy
R AR B A SRy B AT .

(20 388 3 % B 1v) e 1 ) 20 1 S B0 2R 9 e ik
SRS A G HY T B ke I 300 32 2 % A Dy R

(3308 3 7 o W S D A RO TR R 51T Y
W5 A 2 MO A I B A L L F 7R T IR I 5 |
T RIRTH RN I 2 73 8 2 B i #4500 7 7
Az BN FE TR 0 it 5 R T R 5 R Al A AR R
Ge e At B s 3R WL T ASRRE TR B E S R R
G175 S A R AR N R 8 A TR L 5 BRI



5511 4]

A T4 L OE SRR

BRI ARG FE R 5L S 1% 45

?E@W%Iiﬂi%ﬁi/}fj&

e AL S EE S A R N FE R

WEFEAE R 1 IE 50N OF KB 2 R S A7 T
27

AU BT R A T LS.

2% 3k

(1]

(2]

(3]

[4]

[5]

[6]

7]

T, REEKHEBRRGE WAL D )17
JWE5E [D]. dbat: dbstsgidm ks, 2007,

YIN W J. Investigation on nonlinear dynamic behav-
ior in automobile air spring suspension system [D].
Beijing: Beijing Jiaotong University. 2007. (in Chi-
nese)

HUA CR, ZHAO Y, LU Z W, et al. Random vi-

bration of vehicle with hysteretic nonlinear suspen-

sion under road roughness excitation [ J]. Advances

in  Mechanical Engineering, 2018, 10 (1)
168781401775122.

WA, AV, EE. GRS RO IRER
BRRAGM VLR [T, AR E%E RF5%M.

FAREF . 2020, 33(3): 1—

CAOJ H, NIU J C, WANG ]J. Subharmonic reso-
nance of suspension system with negative stiffness
and air spring in parallel [J]. Journal of Shiji-
azhuang Tiedao University: Natural Science Edi-
tion, 2020, 33(3): 1—6. (in Chinese)

ABEBE B A, SANTHOSH J, AHMED A A, etal.
Non-linear mathematical modelling for quarter car
suspension model [J]. International Journal on E-
merging Technologies, 2020, 11(5): 536 —544,
DIALA U H, ZHU Y P, LANG Z Q. Analysis of
the energy dissipation characteristics of a nonlinear
vehicle suspension system [C]//2022 UKACC 13th
International Conference on Control. New York:
IEEE, 2022, 177—182.

JBA A 2R T R A R R R G gl ) A
BHAEREDR 5 [T]. 4B R R 222 4, 2018, 46
(9): 82—87.

GU X Z, LI S M, CHENG C. Research on dynam-

ics properties and performance for negative stiffness

suspension system [ J]. Jounal of Huazhong Univer-

sity of Science and Technology, 2018, 46(9): 82—
87. (in Chinese)
W%, R, Wi, 5. WENESSERR

GU S SRR ST (1], k35 ehid, 2021, 40
(24): 205—211+292.

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

XU X, SHI T L., JIANG X W, et al. Modeling and
dynamic characteristic analysis of a quasi-zero stiff-
ness pneumatic suspension system [ J]. Journal of
Vibration and Shock, 2021, 40(24). 205 — 211+
292. (in Chinese)

SUMAN S, BALAJI P S, SELVAKUMAR K, et
al. Nonlinear vibration control device for a vehicle
suspension using negative stiffness mechanism []J].
Journal of Vibration Engineering &. Technologies,
2021, 9(5): 957—966.

ZHA J L, NGUYEN V, SU B B, et al. Perform-
ance of the seat suspension system using negative
stiffness structure on improving the driver’ s ride
comfort [J]. SAE International Journal of Vehicle
Dynamics, Stability, and NVH, 2022, 6(2): 135—
146.

JA, TRERAS ., MECR. AE. RE ) G N B IR
FREBAELEREE I B S LR,
2023, 23(5).: 2181 —2189.

ZHOU D, ZHANG H J, HAO H R, et al. Analy-
sis of nonlinear characteristics of automotive suspen-
sions with magnetic negative stiffness springs [J].
Science Technology and Engineering, 2023, 23(5):
2181—2189. (in Chinese)

POMEAU Y, MANNEVILLE P. Intermittent
transition to turbulence in dissipative dynamical sys-
tems [ J]. Communications in Mathematical Phys-
ics, 1980, 74(2) . 189—197.

KABIRA]J L, SUJITH R 1. Nonlinear self-excited
intermittency and flame
blowout [ J]. Journal of Fluid Mechanics, 2012,
713: 376 —397.

AWREJCEWICZ J, KRYSKO A V, PAPKOVA 1

V, et al.

thermoacoustic oscillations:

Chaotic dynamics of flexible beams driven
by external white noise [J]. Mechanical Systems
and Signal Processing. 2016, 79: 225—253.
RE, FEa, KB RAHEMERDRENE
SARR TS M EREIAELT]. IG5 b,
2022, 41(2): 45—52+86.

WU X, LIG L, LE Y. Strange nonchaotic dynam-
ics and multistable coexistence phenomena of a sin-
system [ ] 1.
Journal of Vibration and Shock, 2022, 41(2): 45—
52+86. (in Chinese)

GREBOGI C, OTT E, YORKE J A. Chaotic at-

gle-degree-of-freedom vibro-impact

tractors in crisis [ J]. Physical Review Letters,

1982, 48(22): 1507 —1510.



46

8 %

5 &

2024 45 22 4

E

[16]

[17]

(18]

(19]

[20]

(21]

KB, THREA, ZER . 4 Bt i il 8 4k 3l & 40
IR LB ST [J]. R3h 5 ehiki . 2019, 38
(18): 141—147.

ZHANG H, DING W C, LI X F. Structure change
mechanism of the attractor basin in a piecewise-
smooth vibro-impact system [J]. Journal of Vibra-
tion and Shock, 2019, 38(18): 141—147. (in Chi-
nese)

b, BUheL, skFEE. E R RE I RG IR
FITEIARESE SR 154, 2023, 55(1):
203—212.

JIN H, LV X H, ZHANG Z H. et al. Discontinu-
ous bifurcations of coexisting attractors for a gear
transmission system [J]. Chinese Journal of Theo-
retical and Applied Mechanics, 2023, 55(1): 203 —

212. (in Chinese)

GHASEM DAMGHANI H, NAZARIMEHR F,
JAFARI S, et al. Chaotic oscillators with two types
of semi-fractal equilibrium points: Bifurcations,
multistability, and fractal basins of attraction []].
Communications in Nonlinear Science and Numerical
Simulation, 2023, 120: 107143.

AR EmdE. RES. KB ARESBOLEE

KBRS g 0rse (], R LR ¥ %4,
2023, 37(3): 119—128.

HOULS, LIGL, WU X, et al. Dynamic study on
the suspension bridge model of single-degree-of-free-
dom piecewise smoothness [ J ]. Journal of
Chongqing University of Technology, 2023, 37(3):
119—128. (in Chinese)

GIMENEZ A, CHAUSSE V, MESEGUER A. Nu-
merical continuation in classical mechanics and ther-
modynamics [ J]. European Journal of Physics,
2015, 36(1): 015015.
ikHE, EWr. B/N, 5. Duffing R 48347 )5
R AR e S A w AL [T]. WS 53 3h =,
2022, 42(4): 46—51.

[22]

[23]

[24]

[25]

[26]

ZHANG J T, WANG X, LV X H, et al. Stability
and bifurcation evolution of coexisting periodic solu-
tions of Duffing system [J]. Noise and Vibration
Control, 2022, 42(4): 46—51. (in Chinese)
ZAEME, Meflct. SRARIELMESh 1 R G W)
M FTH [T, N ) 22241 . 2003,20(4) : 80— 85.
LID X, XU J X. Generalized shooting method for
determining the periodic orbit of the nonlinear dy-
namics system [J]. Chinese Journal of Applied Me-
chanics, 2003, 20(4). 80—85.
SRTFBE. BT AT B R 1% B R e R E My
BrIDI. =M. 2SR, 2022,

ZHANG Z H. Stability analysis of single-stage gear

(in Chinese)

transmission system based on shooting method [D].
Lanzhou: Lanzhou Jiaotong University, 2022. (in
Chinese)

S, BiEE . E3L AL 3 I RS Floquet FRHAE
FeF I LI ] B D224, 2004, 21(3)
21—26.

JINL, LU QS, WANG Q. Calculation methods of
Floquet multipliers for non-smooth dynamic system
[J]. Chinese Journal of Applied Mechanics, 2004,
21(3): 21—26. (in Chinese)

Zelnk . AR, XGHAEIE Duffing $R 7 09 4 FR 44
Ry SRMIT]. 3h i 54Em 4, 2021, 19
5): 1—7.

LI G Q, XIE J] H. Symmetry, cusp bifurcation and
chaos of the double-impact Duffing oscillator [J].
Journal of Dynamics and Control, 2021, 19(5): 1—
7. (in Chinese)

PURE, B30, X1, & FXEENERRS
B G > 2 M 2R SR LT ] 2 e S ek,
2023, 21(3): 30— 36.

HE E X, ZHAO W H, LIU R. Hysteresis bifurca-
tion and control multistability of nonlinear vehicle
suspension system [J]. Joural of dynamics and con-

trol, 2023, 21(3): 30—36. (in Chinese)



