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Abstract The parameter adaptive adjustment of automobile active suspension controller has always been
a research hotspot in the field of automobile suspension control. In this paper, the whale optimization al-
gorithm is selected as the parameter adjustment algorithm of the controller, and the improvement strate-
gy of the algorithm is proposed. Based on this, a parameter self-tuning PID controller based on the im-
proved whale optimization algorithm is designed. Based on the suspension dynamic deflection, body ver-
tical acceleration and wheel dynamic displacement, the dimensionless evaluation index is built to feed
back to the improved whale algorithm to adjust the controller parameters in real time. In order to verify
the effectiveness of the controller, the simulation model of active suspension system is established and
compared with different active suspension systems in transverse and longitudinal aspects. The simulation
results show that the controller proposed in this paper can obviously improve the ride comfort, ride sta-

bility and ride comfort of the vehicle.
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Table 1 The test function iterates the data
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Table 2 Suspension parameter
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Fig. 4 B-class road surface excitation
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