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摘要 基于修正的应变梯度理论和Kirchhoff-Love假设,建立了由 Winkler-Pasternak弹性夹层连接的三层

微板系统的耦合振动模型.结合Gauss-Lobatto求积准则和微分求积准则,构造了具有4节点108个自由度

的C2 连续性微分求积有限元,以求解微板系统的耦合振动边值问题.通过数值算例,验证了本文微分求积

有限元法的有效性,讨论了各因素对微板系统振动频率及模态的影响.结果表明:微板系统发生完全同步振

动时,弹性夹层不起作用;应变梯度效应或弹性夹层刚度不仅影响微板系统的各阶振动频率,而且会使系统

产生模态跃迁现象;边界条件对微板系统振动频率计模态的影响显著.

关键词 修正的应变梯度理论, 三层微板系统, 耦合振动, 微分求积有限元, 模态跃迁
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Abstract Based
 

on
 

the
 

modified
 

strain
 

gradient
 

theory
 

and
 

the
 

Kirchhoff-Love
 

hypothesis,
 

a
 

coupled
 

vi-
bration

 

model
 

for
 

a
 

triple-layered
 

microplate
 

system
 

connected
 

by
 

Winkler-Pasternak
 

elastic
 

interlayers
 

is
 

established.
 

By
 

combining
 

the
 

Gauss-Lobatto
 

quadrature
 

and
 

the
 

differential
 

quadrature
 

rules,
 

a
 

C2
 

con-
tinuous

 

differential
 

quadrature
 

finite
 

element
 

with
 

4
 

nodes
 

and
 

108
 

degrees
 

of
 

freedom
 

is
 

constructed
 

to
 

solve
 

the
 

boundary
 

value
 

problem
 

of
 

the
 

coupled
 

vibration
 

of
 

the
 

microplate
 

system.
 

Numerical
 

examples
 

validate
 

the
 

effectiveness
 

of
 

the
 

differential
 

quadrature
 

finite
 

element
 

method
 

proposed
 

in
 

this
 

paper,
 

and
 

the
 

influences
 

of
 

various
 

factors
 

on
 

the
 

vibration
 

frequencies
 

and
 

modes
 

of
 

the
 

microplate
 

system
 

are
 

dis-
cussed.

 

The
 

results
 

show
 

that
 

the
 

elastic
 

interlayers
 

are
 

ineffective
 

during
 

in-phase
 

vibration
 

of
 

the
 

mi-
croplate

 

system.
 

Both
 

the
 

strain
 

gradient
 

effect
 

and
 

the
 

stiffness
 

of
 

the
 

elastic
 

interlayers
 

affect
 

not
 

only
 

the
 

vibration
 

frequencies
 

of
 

the
 

microplate
 

system
 

at
 

various
 

orders
 

but
 

also
 

induce
 

mode
 

jumping
 

phe-
nomena

 

in
 

the
 

system.
 

Boundary
 

conditions
 

significantly
 

influence
 

the
 

vibration
 

frequencies
 

and
 

modes
 

of
 

the
 

microplate
 

system.
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引言
  

微机电系统(MEMS)是利用微纳加工技术,将

微小的传感器、执行机械结构和电子电路集成在一

起,形成微型的机械系统,已广泛应用于汽车、医
疗、消费电子、工业控制等领域.MEMS的承力构

件通常以微梁、微板、微管等形式存在.当构件特征

尺寸减小至微纳米量级时,其力学特性具有显著的

尺度依赖性[1,2].为了描述尺度效应现象,研究者们

提出了非局部理论[3,4]、应变梯度理论[5-8]和偶应力

理论[9,10]等非经典连续介质力学理论.过去20年

里,以上非经典理论被广泛应用于研究微纳米梁、

板、壳等结构的静动力学行为[11,12].
随着 MEMS应用场景越来越广泛,单层微板

已难以满足当下日益增长的集成化和多功能化需

求.多层微板系统是单层微板的重要技术延伸,通
过层间垂直堆叠和互连突破了单层功能元件集成

密度的物理限制,现如今已在可移动反射镜、射频

开关、驱动器、谐振器、可延展电路等领域获得广泛

应用.因在边界条件、层厚比、材料参数以及受载方

式选择上具有高度可调节性,多层微板系统的力学

特性引起了诸多学者的重视.Rajasekaran[13]基于

Eringen非局部弹性理论研究了不同形状嵌入聚合

物基体的多层石墨烯片在不同边界条件下的自由

振动特性并分析了各参数对石墨烯片振动特性的

影响.张立民等[14,15]基于修正的偶应力理论和精

化高阶剪切变形理论研究了由 Winkler-Pasternak
弹性夹层连接的双层微板系统的自由振动特性与

面内压缩屈曲行为,用 Navier法获得了各层均为

四边简支时系统发生同步/异步屈曲的解析解.

Mazur和 Awrejcewicz[16]基于非局部弹性理论、

Kirchhof板理论和von
 

Kármán理论研究了层间

由范德华力连接的双层石墨烯薄片系统在平面磁

场下的几何非线性振动,对同相振动和反相振动模

式受非局部参数的影响进行了分析.Liu等[17]提出

了一种非经典的精细剪切变形理论模型,并结合等

几何分析分析了多层微孔板的静态弯曲、自由振动

和屈曲行为.Shafiei等[18]采用修正的偶应力理论

研究了单层石墨烯片和层间由范德华力连接多层

石墨烯片的屈曲和自由振动特性,发现范德华力的

影响相较于其它参数占主导地位.Abbaspour和

Arvin[19]对一致偶应力理论进行了修正,使其与修

正的偶应力理论兼容,完成了对三层中心对称压电

微孔板自由振动和强迫振动的研究并进行了热屈

曲分析.
  

以上文献回顾表明,双层微板系统的动力学问

题已受到较多关注,且主要局限于各层均为四边简

支的情形,而关于三层微板系统的研究还鲜有涉

及.较之于双层情形,三层情形下系统会出现更加

丰富的动力学新现象.本文拟基于修正的应变梯度

理论和Kirchhoff-Love假设,建立三层微板系统的

耦合振动模型,并构造C2 型微分求积有限元进行

模型求解,探讨边界条件、弹性夹层刚度、应变梯度

参数对系统振动频率及模态的影响.

1 微板系统的耦合振动建模
  

在修正的应变梯度理论中,各向同性线弹性体

在所占据空间Ω 中存储的变形能Πs 为[5]

 Πs=
1
2∫Ω

(σijεij +piγi+τ(1)
ijkη

(1)
ijk +m(s)

ijχ
(s)
ij )dΩ

(1)

式中:εij,γi,η
(1)
ijk 和χ(s)

ij 分别是应变张量、膨胀梯度

张量、拉伸梯度张量偏斜部分和旋转梯度张量对称

部分;σij 为应力张量,pi,τ
(1)
ijk 和m(s)

ij 为高阶应力张

量.
   

变形度量εij,γi,η
(1)
ijk 和χ(s)

ij 定义为

εij =
1
2 ui,j +uj,i  ,

 

γi=
∂εmm

∂xi
,

χ(s)
ij =

1
4eimn

∂2un

∂xm∂xj
+ejmn

∂2un

∂xm∂xi  ,
η
(1)
ijk =

1
3
∂εjk

∂xi
+
∂εki

∂xj
+
∂εij

∂xk  -
 

δij

15
∂εmm

∂xk
+
2∂εmk

∂xm  -δjk

15
∂εmm

∂xi
+
2∂εmi

∂xm  -
 

δki

15
∂εmm

∂xj
+
2∂εmj

∂xm  (2)

式中:eijk 是置换符号,δij 是克罗内克符号;ui 是

位移矢量.
  

本构方程如下

σij =λεmmδij +2Gεij,pi=2Gl20γi

τ(1)
ijk =2Gl21η

(1)
ijk,m

(s)
ij =2Gl22χ

(s)
ij (3)

式中:l0、l1、l2 是应变梯度参数,G=E/2(1+v)是

剪切模量,λ=Ev/(1+v)(1-2v)是体积模量.
  

图1所示为各层几何尺寸和材料性质均相同

的三层微板系统,层间由Winkler-Pasternak弹性
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图1 三层微板系统的示意图

Fig.1 Schematic
 

diagram
 

of
 

the
 

triple-layered
 

microplate
 

system

夹层相连.微板的长度、宽度、厚度依次为Lx、Ly、

H,材料的弹性模量、泊松比、剪切模量、密度依次

为E、v、G、ρ.笛卡尔直角坐标系的坐标面与各层

微板的几何中面重合且原点位于中面左上角.
  

在Kirchhoff-Love假设下,第p 层微板的位

移场如下

u(p)
x =-z

∂w(p)

∂x
,u(p)

y =-z
∂w(p)

∂y
,u(p)

z =w(p)

(4)

式中:u(p)
x 、u

(p)
y 、u

(p)
z 分别为第p 层微板内一点沿

着x、y、z方向的位移分量,w(p)是第p 层微板中

面的挠度.
  

利用式(2)和式(4),可得各层微板的应变张量

和应变梯度张量的非零分量.依据文献[20],不难

得到微板系统的变形能:
 

 ΠS =∑
3

p=1∫Ω

Σ1+Σ2
2

∂2w(p)

∂x2  
2

+
∂2w(p)

i

∂y2  
2􀭠

􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 +

Σ2
∂2w(p)

∂x∂y  
2

+Σ3
∂3w(p)

∂x∂y2  
2

+
∂3w(p)

i

∂x2∂y  
2􀭠

􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 +

Σ1
∂2w(p)

∂x2
∂2w(p)

∂y2 +

Σ4
∂3w(p)

∂x3

∂3w(p)
i

∂x∂y2 +
∂3w(p)

∂y3
∂3w(p)

∂x2∂y  +
Σ3+Σ4

3
∂3w(p)

∂x3  
2

+
∂3w(p)

i

∂y3  
2􀭠

􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁  dΩ (5)

式中Σj 定义如下:

Σ1=GH 2l20-
2l21
15-l22  +νD,

Σ2=GH
2l21
3 +2l22  + 1-ν  D,

Σ3=
GH3

12 l20+
12l21
5  , 

Σ4=
GH3

6 l20-
3l21
5  
(6)

  

系统的动能为

Πk =ρH
2∑

3

p=1∫A

∂w(p)

∂t  
2

dA (7)
  

Winkler-Pasternak弹性夹层引起的势能为

 Πf =
1
2KW w(1)-w(2)  2+

1
2KP

∂w(1)

∂x -
∂w(2)

∂x  
2

+
1
2KP

∂w(1)

∂y -
∂w(2)

∂y  
2

+

1
2KW w(2)-w(3)  2+

1
2KP

∂w(2)

∂x -
∂w(3)

∂x  
2

+

1
2KP

∂w(2)

∂y -
∂w(3)

∂y  
2

(8)
  

考虑式(5)、式(7)和式(8),利用变分原理可得

微板系统的耦合振动方程

(KW -KP �2)(w(2)-w(1))-ρH
∂2w(1)

∂t2
-

 (Σ1+Σ2)�4w
(1)+(Σ3+Σ4)�6w

(1)=0,

(KW -KP �2)(w(1)-2w(2)+w(3))-

 ρH
∂2w(2)

∂t2
-(Σ1+Σ2)�4w

(2)+

 (Σ3+Σ4)�6w
(2)=0,

(KW -KP �2)(w(2)-w(3)
3)-ρH

∂2w(3)

∂t2
-

 (Σ1+Σ2)�4w
(3)+(Σ3+Σ4)�6w

(3)=0
(9)

对于各层均为四边简支的情形,系统自由振动的

解析解可通过Navier法求解如下广义特征值方程:

 

K11 K12 K13

K21 K22 K23

K31 K32 K33

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁 -ω2

M11 0 0

0 M22 0

0 0 M33

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁 =0

(10)
式中,M11=M22=M33=ρH(1+Δ2

mnH2),

K11=Δ4
mn
2(Σ3+Σ4)

3 Δ2
mn +Σ1+Σ2  +

 KPΔ2
mn +KW,

K33=K11,
 

K22=K11+KPΔ2
mn +KW,

K32=K23=K21=K12=-KpΔ4
mn -Kw,

K13=K31=0,Δm =mπ/Lx,
 

Δn =nπ/Ly,

Δ2
mn =Δ2

m +Δ2
n. (11)

2 微板系统的微分求积有限元求解
  

从式(5)可以看到,微板系统的势能泛函中出

现了挠度的三阶偏导数,这就要求各层挠度满足

C2 连续性.此外,各层在边界约束方面可以呈现出

复杂多样性.因而,难以通过解析手段获得一般情
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形下微板系统的耦合振动边值问题.近些年来,

Zhang等[20,21]结合 Gauss-Lobatto求积准则和微

分求积准则,提出了求解应变梯度微分求积有限元

法,该方法具有积分点、插值点与单元节点相统一

的形式特点,现已应用于求解单层微纳米梁板的各

类力学问题.本文将文献[20]中方法拓展至三层应

变梯度微板系统中,构造了具有4节点108个自由

度的C2 连续性微分求积有限元.
图2给出了第i层微板单元满足C2 连续性要

求的微分求积几何映射策略.对于[0,2a]×[0,

2b]的矩形域,Gauss-Lobatto求积点横、纵坐标形

成的行向量如下

xGL=a[0,1-α,1-β,1+β,1+α,2]

yGL=b[0,1-α,1-β,1+β,1+α,2](12)
式中:α和β满足以下条件:

(α2-1)(β2-1)=
8
21
,α2-β2=

47
21
,

α2+β2=
2
3
,α2β2=

1
21.

(13)

第p层微板单元挠度场的Lagrange插值形式为

 w(p)=∑
6

i=1
∑
6

j=1
li(x)lj(y)w

(p)
ij  (p=1,2,3)(14)

图2 第p 层微板单元的微分求积几何映射策略
Fig.2 Differential

 

quadrature
 

geometric
 

mapping
 

scheme
 

for
 

the
 

pth
 

layer
 

microplate
 

element
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式中:w(p)
ij 为第p 层微板单元在求积点(xi,yi)处的

挠度值,li(x)、lj(y)分别为x、y 方向Lagrange插

值基函数.依据微分求积准则,单元Gauss-Lobatto
求积点处w(p)的各阶导数可以表示为矩阵形式:

∂m+nw(p)

∂xm∂yn
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

GL
=A(m)

x A(n)
y w(p)

GL,

∂mw(p)

∂xm
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

GL
=A(m)

x w(p)
GL,

∂nw(p)

∂yn
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

GL
=A(n)

y w(p)
GL

 (15)

式中:A(m)
x 和A(n)

y (本文m,n取值0,1,2)为微分求

积权系数矩阵[20];wp
GL 为第p层微板单元中各求积

点处挠度形成的如下所示列向量

w(p)
GL = w(p)

11 w(p)
21 w(p)

31 w(p)
41 w(p)

51 w(p)
61 

            

w(p)
12 w(p)

22 w(p)
32 w(p)

42 w(p)
52 w(p)

62
           

w(p)
13 w(p)

23 w(p)
33 w(p)

43 w(p)
53 w(p)

63
            

w(p)
14 w(p)

24 w(p)
34 w(p)

44 w(p)
54 w(p)

64
            

w(p)
15 w(p)

25 w(p)
35 w(p)

45 w(p)
55 w(p)

65
           

w(p)
16 w(p)

26 w(p)
36 w(p)

46 w(p)
56 w(p)

66 T

(16)
  

若采用式(15)分别离散微板系统变形能和动

能,所得表达式仅包含Gauss-Lobatto求积点处挠

度本身.为满足单元间协调性要求,需要通过微分

求积准则将单元求积点处位移列向量w(p)
GL 转换为

单元角点处位移列向量w(p)
N ,即

w(p)
N =Bw(p)

GL (17)
式中:

w(p)
N = <w(p)>11 <∂w

(p)

∂x
>
11
… <∂

4w(p)

∂x2∂y2
>
11

􀭠
􀭡

􀪁
􀪁

           

<w(p)>61 <∂w
(p)

∂x
>
61
… <∂

4w(1)

∂x2∂y2
>
61

           

<w(p)>66 <∂w
(p)

∂x
>
66
… <∂

4w(1)

∂x2∂y2
>
66

           

<w(p)>16 <∂w
(p)

∂x
>
16
… <∂

4w(1)

∂x2∂y2
>
16

􀭤
􀭥

􀪁
􀪁

T

(18)

  

利用微分求积准则可得

w(p)
N =Bw(p)

GL (19)
式中:转换矩阵B 的表达式参见文献[20].

  

利用式(15)和(19)可将式(5)中变形能离散为

 ΠS =∑
3

p=1

{(w(p)
N )T(B-1)T{Σ1(A

(2)
x )TCGA

(2)
y +

Σ1+Σ2

2
[(A(2)

x )TCGA
(2)
x +(A(2)

y )TCGA
(2)
y ]+

Σ3+Σ4

3
[(A(3)

x )TCGA
(3)
x +(A(3)

y )TCGA
(3)
y ]+

Σ3[(A
(1)
x A(2)

y )TCGA
(1)
x A(2)

y +
(A(2)

x A(1)
y )TCGA

(2)
x A(1)

y ]+

Σ4[(A
(3)
x )TCGA

(1)
x A(2)

y +(A(3)
y )TCGA

(2)
x A(1)

y ]+
 

Σ2(A
(1)
x A(1)

y )TCGA
(1)
x A(1)

y }B-1w(p)
N } (20)

式中:CG 为权系数矩阵,具体参见文献[20].
  

利用式(15)和(19)可将式(7)中动能离散为

Πk =∑
3

p=1

[1
2ρH(w·(p)N )T(B-1)TCGB-1w·(p)N ]

(21)
利用式(15)和(19)可将式(8)中弹簧势能离散为

Πf =(w(1)
N -w(2)

N )T(B-1)T[1
2KwCG+

 12Kp(A
(1)
x )TCGA

(1)
x ]B-1(w(1)

N -w(2)
N )+

 (w(2)
N -w(3)

N )T(B-1)T[1
2KwCG+

 12Kp(A
(1)
x )TCGA

(1)
x +

 12Kp(A
(1)
y )TCGA

(1)
y ]B-1(w(2)

N -w(3)
N ) (22)

引入以下单元总体位移列向量:

dN=

<w(1)>11 <∂w
(1)

∂x
>
11
<∂w

(1)

∂y
>
11
…<∂

4w(1)

∂x2∂y2
>
11

<w(2)>11<
∂w(2)

∂x
>
11

 

<∂w
(2)

∂y
>
11

 

…
 

<∂
4w(2)

∂x2∂y2
>
11

<w(3)>11 <∂w
(3)

∂x
>
11

 

<∂w
(3)

∂y
>
11

 

…
 

<∂
4w(3)

∂x2∂y2
>
11

︙

<w(1)>16 <∂w
(1)

∂x
>
16

 

<∂w
(1)

∂y
>
16

 

…
 

<∂
4w(1)

∂x2∂y2
>
16

<w(2)>16 <∂w
(2)

∂x
>
16

 

<∂w
(2)

∂y
>
16

 

…
 

<∂
4w(2)

∂x2∂y2
>
16

<w(3)>16 <∂w
(3)

∂x
>
16

 

<∂w
(3)

∂y
>
16

 

…
 

<∂
4w(3)

∂x2∂y2
>
16

􀭤
􀭥

􀪁
􀪁 T

(23)

Ke 和Me 的元素可以表示为

K(e)
ij =

∂2(ΠS +Πf)
∂dN(i)∂dN(j)

,
 

M(e)
ij =

∂2Πk

∂dN(i)∂dN(j)

(24)

  

综上所述,三层微板单元各层均被离散为具有
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4个节点矩形单元,每个节点处包含9个自由度,

将三层微板单元各层在相同角点位置的节点合视

为一个整体节点,新节点处便有27个自由度.矩形

微板常见边界约束主要有固支(C)、简支(S)以及

自由(F),数值实施中对应的位移边界条件参见文

献[20]中单层情形.

3 结果和讨论
  

本节通过数值算例来验证本文理论模型及数

值方法的有效性,并讨论应变梯度参数、弹性夹层

刚度和边界条件对微板系统振动特性的影响.假定

微板由环氧树脂组成,弹性模量E=1.44GPa,泊
松比v=0.3,密度ρ=1220kg/m3.引入以下无量

纲参数:

ω-n =ωnL2
Y

ρH
D
,k
-
W =

KWL4
Y

D
,k
-
p =

KPL2
Y

D
(25)

 

3.1 有效性验证
  

已有文献对应变梯度板的微分求积有限元的

收敛性进行了验证,结果证明了在相同结点参数下

微分求积有限元与标准有限元相比具有更低的单

元矩阵条件数.本节讨论了单元收敛性与网格密度

的关系.图3给出了边界条件为SFSF-SFSF-SFSF
不同网格下三层微板系统前5阶无量纲固有频率,

其中k
-
W =100、k

-
P =10、Ly =Lx =1、Lx/H =100、

l/H =1.结果显示,随着网格的细化,前5阶无量

纲频率收敛于稳定值.若无特别说明,后续计算中

网格密度保持为30×30.
表1比较了本文求解方法和文献[22]中Ray-

leigh-Ritz法计算的宏观单层方形板的无量纲频率,

图3 不同网格下微板系统的前5阶无量纲固有频率

Fig.3 First
 

five
 

dimensionless
 

natural
 

frequencies
 

of
 

the
 

triple-layered
 

microplate
 

system
 

under
 

different
 

meshes

出于比较的原因,本文模型同步振动的情况下,尺
度效应取l/H =0,Ly =Lx,Lx/H =100.由表1
可知微分求积有限元所预测的结果略小于 Ray-
leigh-Ritz法计算的结果,但最大误差均在1.221%
以 内;对 于SSSS板,微 分 求 积 有 限 元 与Navier
法预测结果十分接近;边界条件约束越强,板的振

动频率越大,原因在于增加边界约束会使结构刚性

增强.

表1 不同边界条件下宏观单层方形板的前4阶无量纲基频

Table
 

1 First
 

four
 

dimensionless
 

fundamental
 

frequencies
 

of
 

a
 

macroscopic
 

single-layer
 

square
 

plate
 

under
 

different
 

boundary
 

conditions

Boundary
 

conditions Method
Dimensionless

 

frequency

ω~1 ω~2 ω~3 ω~4
􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋􀪋

SSSS
Present①

Present②

Ref.[22]

19.739
19.739
19.739

49.348
49.348
49.348

78.957
78.957
78.957

98.696
98.696
98.696

SSSF Present②

Ref.[22]
11.684
11.684

27.756
27.757

41.197
41.220

59.066
59.360

SFSF Present②

Ref.[22]
9.631
9.631

16.135
16.135

36.726
37.180

38.945
39.134

CCCF Present②

Ref.[22]
23.933
23.960

40.021
40.021

63.255
63.291

76.748
78.139

CFCF Present②

Ref.[22]
22.185
22.223

26.556
26.556

43.583
44.072

61.215
61.265

①
 

Navier
 

method;
 

②
 

Differential
 

quadrature
 

finite
 

element
 

method

3.2 参数研究
  

表2给出了微板系统在半波数相同时会出现

同步振动、部分异步振动和完全异步振动的三种情

形.以微板系统边界条件为SSSS-SSSS-SSSS的振

动模态,其中l/H=0、Ly/Lx=2,Lx/H=100、k
-
w

=50、k
-
p =5.各 层 微 板 的 最 大 振 幅 比 为ξ =

|w(1)|max∶|w(2)|max∶|w(3)|max.部分异步振动

情形中层板相对上层和下层静止,上下两层板振动

方向相反,完全异步振动情形中层板与上下两层板

振动方向相反并且中层板的振幅是上下两层板的

2倍.原因在于,同步振动情形下,弹性夹层不起作

用,部分异步振动情形下,中层板受到上下两层板

通过弹性夹层传递的力刚好抵消使得其静止,完全

异步振动时弹性夹层的变形最大.
  

完全异步振动受到弹性夹层的影响最显著,因
此选取第3阶振动频率分析弹性夹层刚度对系统

频率的影响时.图4呈现了不同弹性夹层刚度下微

板系统第3阶无量纲频率随应变梯度参数的变化

规律.此处Lx/Ly=1、Lx/H=100,系统边界条件
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表2 SSSS-SSSS-SSSS三层微板系统半波数为1时的振动模态

Table
 

2 Vibration
 

modes
 

of
 

the
 

SSSS-SSSS-SSSS
 

triple-layered
 

microplate
 

system
 

with
 

half-wave
 

number
 

1
Vibration

 

mode

In-phase
 

vibration Partially
 

out-of-phase
 

vibration Out-of-phase
 

vibration

图4 不同弹性夹层刚度下微板系统的第3阶无量纲频率

Fig.4 The
 

third
 

order
 

dimensionless
 

frequencies
 

of
 

the
 

microplate
 

system
 

under
 

different
 

elastic
 

interlayer
 

stiffnesses

设为SFSF-SFSF-SFSF.可以看出,完全异步振动

情形下,弹性夹层刚度越大,系统频率越大,并且对

比弹性夹层刚度变化前后系统频率的变化可以看

出Pasternak夹层刚度与Winkler夹层刚度相比对

系统频率影响更大.
  

图5呈现了两种边界条件下微板系统的前3

阶无量纲频率随应变梯度参数的变化,此处k
-
W =

100,k
-
P =10、Lx=Ly=1、Lx/H=100.结果表明,

无量纲频率随应变梯度参数的增大而增大,并且边

界约束越强,微板系统的频率受尺度效应的影响越

显著.由于前3阶频率分别对应于系统的同步振

动,部分异步振动和完全异步振动三种情形,图5
可以看出完全异步振动频率大于部分异步振动频

率,后者又大于同步振动频率,而随着l/H 的变

大,前3阶频率的差异会逐渐减小,这是由于尺度

图5 不同边界条件下微板系统的前3阶无量纲频率

Fig.5 First
 

three
 

dimensionless
 

frequencies
 

of
 

the
 

microplate
 

system
 

under
 

different
 

boundary
 

conditions

效应参数对系统刚度的增强使得弹性夹层刚度在

系统刚度中所占比重减小.
  

为定量研究弹性夹层参数对微板各阶振动模

态的影响程度,对k
-
W =50、k

-
P =5和k

-
W =1000、k

-
P

=40两种情形下对应模态向量进行相关性分析.第

i阶模态向量的相关系数Ri 定义如下[23]:

Ri=
N(Xi)TYi-N2X

-
iY

-
i

(Xi)TXi-N2X
-2

i· (Yi)TYi-N2Y
-2
i

(26)

式中,Xi 和Yi 分别是k
-
W =50、k

-
P =5和k

-
W =1000、

k
-
P =40情形下系统对应的第i阶模态向量,X

-
i 和

Y
-
i 是对应均值.

  

表3显 示 了 弹 性 夹 层 刚 度 对 CCSF-CCSF-
CCSF微板系统前4阶振动模态的影响,此处l/H

09



第10期 文鹏军等:三层应变梯度微板系统的耦合振动特性

表3 弹性夹层刚度对CCSF-CCSF-CCSF三层微板系统振动模态的影响

Table
 

3 Effect
 

of
 

the
 

elastic
 

interlayer
 

stiffnesses
 

on
 

the
 

vibration
 

modes
 

of
 

the
 

CCSF-CCSF-CCSF
 

triple-layered
 

microplate
 

system

(k
-
W,k

-
P)

Vibration
 

mode
 

and
 

frequency
1 2 3 4

(50,
 

5)

(1000,
 

40)

图6 不同弹性夹层刚度下三层微板系统模态相关系数热力图

Fig.6 Heatmap
 

of
 

the
 

modal
 

correlation
 

coefficients
 

of
 

the
 

three-layer
 

microplate
 

system
 

under
 

different
 

elastic
 

interlayer
 

stiffnesses

=0、Ly/Lx=2、Lx/H=100.可以看出随着弹性夹

层刚度增大,第1阶和第2阶模态受影响较小,第3
阶和第4阶模态发生交换即模态跃迁现象.图6是

基于表3的模态跃迁现象的定量表示,图中元素的

值越接近于1模态之间的相关性就越高.对图6分

析发现系统的第3阶和第4阶模态在弹性夹层刚

度变化前后彼此之间的相关系数分别为0.9933和

1,这说明较小弹性夹层模量的第3阶模态与较大

弹性夹层模量的第4阶模态具有强相似性,较小弹

图7 不同应变梯度参数下三层微板系统模态相关系数热力图

Fig.7 Heatmap
 

of
 

the
 

modal
 

correlation
 

coefficients
 

of
 

the
 

triple-layered
 

microplate
 

system
 

under
 

different
 

strain
 

gradient
 

parameters

性夹层模量的第4阶模态与较大弹性夹层模量的

第3阶模态也具有强相似性,说明了表3中系统在

第3阶和第4阶模态处发生的模态跃迁现象是合

理的.
  

表4呈现了尺度效应对CCCC-CFSS-SCCF三

层微板系统振动模态的影响,此处k
-
W =1000、k

-
P =

40、Ly/Lx =2.结果显示,随着l/H 增大,各层微

板的振幅峰值比随着应变梯度参数增加剧烈变化,
说明应变梯度参数对不同边界条件下的微板振幅
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表4 尺度效应对CCCC-CFSS-SCCF三层微板系统振动模态的影响

Table
 

4 Size
 

effects
 

on
 

the
 

vibration
 

modes
 

of
 

a
 

CCCC-CFSS-SCCF
 

triple-layered
 

microplate
 

system

(k
-
W,k

-
P)

Vibration
 

mode
 

and
 

frequency
1 2 3 4

0

ξ

1

ξ

的影响不一致;表4中系统在应变梯度参数改变前

后发生了模态跃迁现象,跃迁后第3阶和第4阶模

态前后顺序发生了交换,分析图7中的相关系数也

可以得到相同的结论,即应变梯度参数变化使微板

系统发生了模态跃迁现象,这种现象可以通过模态

相关系数热力图准确识别.

4 结论

本文采用修正的应变梯度理论和Kirchoff假设

建立了由弹性夹层连接的三层微板系统的自由振动

模型,构造了C2 型微分求积有限元.通过数值算例

验证了本文模型的准确性和有效性,探究了各参数

对三层微板系统振动特性的影响.主要结论如下:
(1)当三层板完全相同时,系统会出现同步振

动,部分异步振动和完全异步振动三种情形,并且

弹性夹层对三者的影响逐渐增加;尺度效应对系统

频率的影响程度与边界条件、弹性夹层刚度有关;
(2)弹性夹层刚度和应变梯度参数变化会使系

统产生模态跃迁现象,模态相关系数定量地说明了

弹性夹层刚度和应变梯度参数对模态的影响.
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