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Coupled Vibration Characteristics of the Triple-Layered Strain
Gradient Microplate System "
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(2. School of Automotive Engineering, Changzhou Institute of Technology, Changzhou 213032. China)

Abstract Based on the modified strain gradient theory and the Kirchhoff-LLove hypothesis, a coupled vi-
bration model for a triple-layered microplate system connected by Winkler-Pasternak elastic interlayers is
established. By combining the Gauss-Lobatto quadrature and the differential quadrature rules, a C* con-
tinuous differential quadrature finite element with 4 nodes and 108 degrees of freedom is constructed to
solve the boundary value problem of the coupled vibration of the microplate system. Numerical examples
validate the effectiveness of the differential quadrature finite element method proposed in this paper, and
the influences of various factors on the vibration frequencies and modes of the microplate system are dis-
cussed. The results show that the elastic interlayers are ineffective during in-phase vibration of the mi-
croplate system. Both the strain gradient effect and the stiffness of the elastic interlayers affect not only
the vibration frequencies of the microplate system at various orders but also induce mode jumping phe-
nomena in the system. Boundary conditions significantly influence the vibration frequencies and modes of

the microplate system.
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Table 1

of a macroscopic single-layer square plate under

First four dimensionless fundamental frequencies

different boundary conditions

Boundary Dimensionless frequency

Method

conditions ~ ~ ~ ~

Present”  19.739 49.348 78.957 98.696
SSSS Present?  19.739 49.348 78.957 98.696
Ref.[22] 19.739 49.348 78.957 98.696

Present?  11.684 27.756 41.197 59.066

SSSF
Ref.[22] 11.684 27.757 41.220 59.360

sent?  9.631  16. 1: .726  38.945

SESF Present 63 6.135 36.726 38.945
Ref.[22]  9.631 16.135 37.180 39.134

CCCF Present?  23.933 40.021 63.255 76.748
o Ref.[22]  23.960 40.021 63.291 78.139
CFCF Present?  22.185 26.556 43.583 61.215
’ Ref.[22] 22.223 26.556 44.072 61.265

(@ Navier method; @ Differential quadrature finite element method
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Table 2 Vibration modes of the SSSS-SSSS-SSSS triple-layered microplate system with half-wave number 1

Vibration mode

In-phase vibration

Partially out-of-phase vibration

Out-of-phase vibration

S
5 5 5 B

34

i
s

-1 4

—4

£=0.5:1:0.5

[
(=]

S W [—} d
+ didiil
[
E?rlék‘lg?rl?‘l
[T

vy
T

W A A U LN
@ W O
T T T

vy

Third-order dimensionless frequency

ﬂ%ﬁ'

0.0 01 02 03 04 05 06 07 08 09 1.0
VH

P4 A T SR e J T BE T RO AR GE YA 3 I TG e A AR

Fig.4 The third order dimensionless frequencies of the microplate

NDoWw
wn o
.‘

system under different elastic interlayer stiffnesses

&k SFSF-SFSF-SFSF. 1] DL A& L 58 4 5% 4 IRk 3
I T, st e J22 I B 0k K, 2R e 401 3 Bk K, 9 Lk
Ll 3 e 22 M B2 AR Ak T I 2R G 00R 1 AR Ak AT LR
i Pasternak ¥ )2 NI 5 Winkler 32 25 Wil B AH L XF
EXWES AN

Bl 5 BT PRI AT Ol RT3
i TG 45k 20 901 3% Bt 7 A8 B B SR AR Ak B A ey =
100,k =10.L, =L, =1.L,/H =100, 58 %,
T 2k 40 4 e i g A e S B 4 K B KL O HLid
TR L SR FR G 1 AR 22 RO 0N 1 5 )
W2, T AT 3 B A A 0 6 T R S8 R A R
iSRS &R AR = FIEIE. A 5
A LU 58 4 5 40 4R 2 MR K T 3 4 S 40 Ok 3 A
R G HE XK TRIB RN R, MEE (/H A2
KT 3 B A 22 7 A BN O i RE

\

—0— —— —0— SFSF-SFSF-SFSF

-<»- Ist -=<®- 2nd --»- 3rd SSSF-SSSF-SSSF

IS
[
T

[V
(= W
T
® %
=%

wn o

[

Dimensionless frequency
(3] [oe] W (%) s
=3

(=]

—_
w

101-""
5 1 1 1 1 1 1 1

00 0.1 02 03 04 05 06 07 08 09 L0
IH
B 5 AR AT RO RS 3 B G A SR

Fig.5 First three dimensionless frequencies of the microplate

system under different boundary conditions

S8R 2 N R G I E ) 4 g A A5 50k e )2 I A
F G AT L E .

5 RS B I 2 2 BO O 45 o B Bl A8
B FERE X by =50.kp =5 Fl by =1000.k
=40 Wi FRIE T T X AR S 1] 2 R A7 A SR S BT 5
i BB I R A SE R R, E R

NX)Y, — N*X.Y,

R. —

i

Y)Yy, — N*Y?
(26)
K, X, MY, 48R by =50k, =5 Fl ky =1000,
=40 B FREX NI i BB, X, A
Y, Xt 4 1.
# 3 W T M JZ NI B X CCSF-CCSF-
CCSF iR ZRGEHT 4 Mg sh LS B 52 L kb ¢/ H

(X)H)'X, — N*X?

Hﬂl



5 10 1) S TS =R N

7 B JEE MU R G R A IR 3l R 91

*x3 BEXRENEI CCSF-CCSF-CCSF Z RN RS IRNESHNE
Table 3 Effect of the elastic interlayer stiffnesses on the vibration modes of the CCSF-CCSF-CCSF trlple—layered microplate system
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three-layer microplate system under different
elastic interlayer stiffnesses
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