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Dynamic Buckling Analysis of Wrinkled Film Substrate Structure
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Abstract Flexible electronic devices, which are based on thin film/substrate structure, have excellent
stretchability and sensitivity, but the dynamic behaviour of this film/substrate structure is very suscepti-
ble to the complex excitation such as temperature change. Therefore, the dynamic buckling behaviour of
thin film/substrate structure under the thermal effect is studied in this paper. Firstly, based on Euler-
Bernoulli beam theory, the governing equations of nonlinear vibration of thin film/substrate structure
under the thermal effect are established. Secondly, the governing equations of nonlinear vibration of thin
film/substrate structures are introduced into Hamilton system by the Galerkin method. Finally, the
Hamilton equation of the thin film/substrate structure is solved by the Symplectic Runge-Kutta method,
and the influence of temperature variation and damping coefficient on the nonlinear dynamic response of
the thin film/substrate structure is discussed. It is found that the temperature variation and the pre-
strain could change the dynamic behaviour of the thin film/substrate structure. With the increase of tem-

perature variation, the vibration frequency of the film/substrate structure increases and the amplitude
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decreases. With the increase of pre-strain, the frequency of the system decreases and the amplitude in-

creases.

Key words film/substrate structure,
perature effects
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Fig. 1 Thin film/substrate structure: (a)Diagram of film/substrate structure; (b) Front view of film/substrate structure
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