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The Tail-up Effect of Amplitude-Frequency Response and Its Electrothermal

Control of Parametrically Excited Microelectromechanical Resonators”
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Abstract In recent years, parametrically MEMS resonators, characterized by their large response ampli-
tude and low phase noise, have emerged as a focal point in the field of MEMS dynamics. This paper in-
vestigates the high-order nonlinear response of micro-mechanical beam resonators under strong paramet-
ric excitation, as well as the influence of electrothermal currents on parametric resonance response.
Firstly, experimental data reveal that under strong parametric excitation, the amplitude-frequency re-
sponse of micro-mechanical beam resonators no longer follows the Duffing hardening curve but exhibits a
“tail-up” phenomenon in the latter half of the response curve. Subsequently to these observations, a par-
ametric dynamic model of the nonlinear resonator is established. Theoretical analysis indicates that the
“tail-up” phenomenon arises from the combined effects of nonlinear damping and high-order nonlinear
stiffness. Furthermore, the paper investigates the influence of electrothermal currents on the parametric

response of the beam. It is demonstrated that the introduction of electrothermal current increases the
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thermal elastic damping and axial stress of the micro-resonator, thereby significantly adjusting the re-

sponse amplitude and resonance range.

Key words MEMS resonator,
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Parameters  Reference data Notes
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