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摘要 本文利用非局部应变梯度理论(NSGT)探究了含粘弹性基底的功能梯度压电(FGP)纳米梁的波传播

特性.基于NSGT,建立含粘弹性基底的Euler梁波传播模型及考虑剪切效应的Timoshenko梁模型,利用哈

密顿原理推导出波传播控制方程;通过引入两种梁变形理论对应的波传播通解方程,对运动方程组进行求

解,探讨了剪切效应、尺度参数、粘弹性参数、FG指数等对波传播频率及相速度的影响.研究表明:尺度参数

对波传播频率的影响与波数密切相关;电压与梯度指数对两种梁波传播特性影响程度不同;粘弹性基底参

数对波传播频率有明显的影响,且其影响程度与波数密切相关.
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Abstract This
 

paper
 

investigates
 

the
 

wave
 

propagation
 

characteristics
 

of
 

functionally
 

graded
 

piezoelec-
tric

 

(FGP)
 

nanobeams
 

on
 

viscoelastic
 

substrates
 

using
 

nonlocal
 

strain
 

gradient
 

theory
 

(NSGT).
 

Based
 

on
 

NSGT,
 

wave
 

propagation
 

model
 

of
 

Euler
 

and
 

Timoshenko
 

beam
 

model
 

considering
 

shear
 

effect
 

are
 

es-
tablished.

 

Then
 

the
 

governing
 

equations
 

of
 

wave
 

propagation
 

are
 

derived
 

by
 

Hamilton
 

principle.
 

By
 

in-
troducing

 

the
 

general
 

equations
 

of
 

wave
 

propagation
 

corresponding
 

to
 

two
 

beam
 

deformation
 

theories,
 

the
 

equations
 

of
 

motion
 

are
 

solved.
 

Moreover
 

the
 

effects
 

of
 

shear
 

effect,
 

scale
 

parameter,
 

viscoelastic
 

pa-
rameter,

 

and
 

FG
 

index
 

on
 

wave
 

propagation
 

frequency
 

and
 

phase
 

velocity
 

are
 

discussed
  

numerically.
 

The
 

results
 

indicate
 

that
 

the
 

effect
 

of
 

scale
 

parameters
 

on
 

wave
 

propagation
 

frequency
 

is
 

closely
 

related
 

to
 

wave
 

number,
 

and
 

the
 

influences
 

of
 

voltage
 

and
 

gradient
 

index
 

on
 

the
 

propagation
 

characteristics
 

for
 

two
 

kinds
 

of
 

beam
 

waves
 

are
 

different.
 

In
 

addition,
 

the
 

viscoelastic
 

base
 

parameters
 

have
 

obvious
 

influence
 

on
 

the
 

wave
 

propagation
 

frequency,
 

and
 

the
 

degree
 

of
 

influence
 

is
 

closely
 

related
 

to
 

wave
 

number.
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引言
  

智能材料能够将一种能源转化为另一种能源,

具有其它材料无法比拟的优异性能,包括自感知和

自适应能力,在智能结构和系统中得到广泛应用,

尤其在纳米技术、振动控制、传感器和致动器领域.
其中压电材料作为一种独特的智能材料,因其具有

机电耦合性强、功耗低、响应灵敏等特性,使其在传

感器、微纳米机器人和柔性电子器件等领域备受青

睐,具 有 广 泛 的 应 用[1-4].其 中,功 能 梯 度 压 电

(Functionally
 

Graded
 

Pizeoelectric,FGP)材料是

采用先进的材料复合技术将两种或多种不同材料

耦合而成的非均质材料[5],具有良好的抗变形能

力、机 电 转 换 性、耐 腐 蚀 性 及 避 免 应 力 集 中 特

性[6-8],广泛应用于电力电子、机电一体化、电信、诊

断设备和其它当代工业领域.
随着智能器件微型化发展,FGP材料在纳米

带、传感器、压力容器等工程领域中承载构件可以

简化为特征尺度处于微纳米量级的梁、板、壳等结

构.构件特征尺寸减小至纳米尺度,原子间的长程

相互作用力显著增加,尺度效应不可忽视.研究发

现,经典连续介质力学理论所预测的纳米结构振动

频率与实际测量结果存在10%~30%的差异[9].
为有效研究小尺度效应对纳米结构力学特性的影

响,研究者们提出了各种与尺度相关的理论来描述

尺度效应现象,认为连续体中某一点的应变不是仅

取决于该点处的应变,而是取决于连续体内所有物

质点的应变.由Eringen等[10]提出的非局部弹性理

论(Nonlocal
 

Elasticity
 

Theory,NET)在纳米力学

研究中扮演着重要角色,非局部连续力学将分子间

作用力是长程力的思想引入到传统连续介质力学

中,被证明能成功地预测软化效应[11-13].含流体的

双壁碳纳米管的非线性振动[14]研究中发现 NET
无法预测材料可能存在的刚度硬化效应.Mind-

lin[15]提出了应变梯度理论(Strain
 

Gradient
 

Theo-

ry,SGT),其中引入尺度参数来考虑高阶应变梯度

或位错密度考虑对结构力学性能的影响.Lim 等

人[16]基于此提出了非局部应变梯度理论(NSGT),

认为弹性体内的应力是由应变梯度高阶应力和非

局部应力组成,实现了基于一种理论同时描述结构

可能存在的刚度硬化和软化效应.Lim将该理论应

用于纳米梁和碳纳米管中的波传播分析中,揭示了

关于晶格动力学和波传播实验的一些新发现.Ma
等人[17]基于此研究了磁电弹性纳米壳中的波传播

特性.不少学者也利用非局部应变梯度理论探究了

功能梯度压电纳米结构的动态特性[18-21].研究表明

NSGT在探究微纳尺度结构的振动、屈曲、震荡、稳
定和波传播等力学行为领域有广泛的研究前景.

  

压电纳米梁结构在许多基于压电纳米线或纳

米带的纳米器件中起着重要作用,其力学行为研究

对纳米器件设计至关重要[22].大量学者针对梁结

构的力学特性做了很多的研究.Simsek和 Yurt-

cu[23]基于 NET和Euler-Bernoulli梁理论建立了

FGP纳米梁的非局部模型,研究了非局部参数、几
何性质、材料组分对静态弯曲和屈曲响应的影响.
随后Rahmani和Pedram[24]采用考虑剪切效应的

Timoshenko梁理论,建立了非局部FGP梁模型,

探讨了梯度指数、尺度参数和长厚比对纳米梁振动

特性的影响.同时,研究发现安置在粘弹性地基上

的FGP结构具有出色的抗疲劳、阻尼提高和降噪

效果[25-27],极大地满足了工程设计对减噪、减震的

要求.其中 Winkler-Pasternak模型是工程实践中

应用最广泛的模型[28].
  

本文基本NSGT,分别建立了含 Winkler-Pas-
ternak粘弹性基底的Euler-Bernoulli梁及考虑剪

切效应的 Timoshenko梁波传播模型.其中FGP
材料由PZT-4相和PZT-5H相组成,利用 Hamil-
ton原理推导梁在自由空间中谐波传播的运动微

分方程,通过引入两种梁位移场下对应的谐波解,

求解得到两种FGP纳米梁波传播模型中的频散关

系,对剪切效应、尺度参数、粘弹性参数、FG指数等

对波传播频率及相速度的影响进行了参数化分析.

1 功能梯度压电纳米梁的动力学建模

1.1 非局部应变梯度压电材料本构理论

Lim等引入了两个可表征两种尺度效应的尺度

参数建立了NSGT,该理论下的本构方程表达为[16]:

tij =σ(0)
ij -

dσ(1)
ij

dx
(1)

式中,σ(0)
ij 表示经典非局部应力,σ(1)

ij 表示高阶非局

部应力.
  

由于本构方程中涉及空间积分,解决非局部问

题在数学上相当困难.根据Eringen在NET中推
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导思路,可以得到在电场影响下的简化应力与非局

部应力之间的关系式:

σ(0)
ij =∫

L

0
{α0(|x-x'|,e0a)[cijklε'kl(x')-

 ekijEk(x')]}dx' (2)

σ(1)
ij =l2∫

L

0
{α1(|x-x'|,e1a)[cijklε'kl,x(x')-

 ekijEk(x')]}dx' (3)

式中,cijkl 表示弹性张量,ε'表示x'处的应变张量,

e0a 和e1a 是表征非局部效应的非局部参数,l是

考虑高阶应变梯度效应的材料特征长度参数.通过

将方程(2)、方程(3)代入式(1),并假设e0=e1,可
以获得基于NSGT的一般本构方程:

σij -(e0a)2 �2σij

 =(1-l2 �2)(cijklεkl -ekijEk) (4)

式中,�2=∂2/∂x2+∂2/∂y2 表示拉普拉斯算子.式
(4)中的l2 �2可以看作是对经典本构方程的修正.
令e0=e1=e并保留高阶项�2,可得在电场影响下

的FGP材料的本构关系为:
(1-μ �2)σij =(1-η�2)(cijklεkl -ekijEk)

(5)
(1-μ�2)Di= (1-η�2)(eiklεkl+sikEk)(6)
  

基于上述本构关系,可得到在电场的影响下,

微分形式的 FGP纳米结构 本 构 方 程 可 以 定 义

如下:

  (1-μ �2)

σxx

σyy

σxy

σyz

σxz

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀮧

􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁􀪁

=(1-η�2)

c~11 c~12 0 0 0

c~12 c~22 0 0 0

0 0 c~66 0 0

0 0 0 c~44 0

0 0 0 0 c~55

􀮠

􀮢

􀮡
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀮧

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

εxx

εyy
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γyz
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􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀮧

􀪁
􀪁
􀪁􀪁

􀪁
􀪁
􀪁􀪁

-

0 0 e~31

0 0 e~32
0 0 0

0 e~24 0

e~15 0 0

􀮠
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􀪁
􀪁
􀪁
􀪁
􀪁􀪁

Ex

Ey

Ez

􀮠

􀮢

􀮡

􀪁􀪁
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􀮦

􀮨

􀮧

􀪁􀪁
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􀮢
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(7)

(1-μ �2)
Dx

Dy

Dz

􀮠

􀮢

􀮡

􀪁􀪁
􀪁􀪁

􀮦

􀮨

􀮧
􀪁􀪁

􀪁􀪁 =(1-η�2)

  e~15γxz +s~11Ex

  e~24γyz +s~22Ey

e~31εxx +e~32εyy +s~33Ez

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀮧

􀪁
􀪁
􀪁􀪁 (8)

式中,μ=(ea)2 表示非局部参数,η=l2 表示长度

尺度参数,Di 表示电位移.

1.2 纳米梁材料特性方程
  

本文提出了一种由PZT-4和PZT-5H两种压

电陶瓷材料组成的沉积在粘弹性基底上的无限长

FGP纳米梁模型,其中纳米梁极化方向为厚度方

向,如下图1所示.纳米梁的厚度为h,受到外部均

匀电压V0 的影响,任意点在x 和z 轴方向上的位

移分别表示为U x,y,z,t  和W x,y,z,t  .

图1 含粘弹性基底的FGP纳米梁示意图

Fig.1 Geometric
 

diagram
 

of
  

FGP
 

nanobeam
 

with
 

viscoelastic
 

substrates
  

FGP纳米梁的材料属性为:

P(z)=(P4-P5H)
z
h +

1
2  

N

+P5H (9)

根据式(9),可得FGP纳米梁的各项材料参数

为[29]:

cij(z)=(c4ij -c5Hij )
z
h +

1
2  

N

+c5Hij (10)

eij(z)=(e4ij -e5Hij )
z
h +

1
2  

N

+e5Hij (11)

sij(z)=(s4ij -s5Hij )
z
h +

1
2  

N

+s5Hij (12)

ρ(z)=(ρ4-ρ5H)
z
h +

1
2  

N

+ρ5H (13)

式中,材料的弹性常数、压电常数、介电常数及材料

密度分别表示为:cij、eij、sij 和ρij .
  

为满足 Maxwell方程,FGP纳米梁厚度分布

的电势定义为[30]:

Φ􀮨(x,z,t)=-cos(βz)Φ(x,t)+
2zV0

h
(14)

式中,β=π/h 为线性常数,Φ(x,t)表示中平面电

势变化,V0 为初始外部电压.根据电势方程,可求

得空间任意点轴向及纵向上的电场分量为[31]:

Ex =-
∂Φ􀮨

∂x=cos
πz
h  ∂Φ∂x (15)

Ez =-
∂Φ􀮨

∂z=-
π
hsin

πz
h  Φ-

2V0

h
(16)
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1.3 功能梯度压电纳米梁波传播模型

1.3.1 非局部Euler-Bernoulli梁波传播模型
  

根据Euler-Bernoulli梁位移场,梁中任意点位

移分量为:

u(x,z,t)

w(x,z,t)  = -z∂W
(x,t)
∂x

 W(x,t)

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁

􀮦

􀮨
􀮧

􀪁􀪁
􀪁􀪁 (17)

式中,W(x,t)表示梁中平面上的点沿z 轴方向上

的位移.因此应变及位移间关系为:

εxx =-z∂
2W
∂x2

(18)
  

为得到控制方程,应用如下Hamilton原理:

∫
t

0
(δΠK -δΠS +δΠF)dt=0 (19)

式中,ΠS,ΠK 和ΠF 和分别表示应变能、动能和外

力做功.
  

FGP复合纳米梁的应变能可表示为:

 ΠS =∫A
(σxxεxx -DxEx -DzEz)dA

=
1
2∫A

-σxxz
∂2W
∂x2 -DxEx -DzEz  dA

=
1
2∫

L

0
-Mx

∂2W
∂x2  dx-

1
2∫A

Dxcos(βz)
∂Φ
∂x-􀭠

􀭡

􀪁􀪁

Dz βsin(βz)Φ+
2V0

h  􀭤􀭥

􀪁
􀪁 dA (20)

  

动能表示为:

ΠK =
1
2∫

L

0
I0
∂W
∂t  

2􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 dx (21)
  

由外部均匀电压变化所做的功ΠF1
可以通过

以下公式获得:

ΠF1=
1
2∫

L

0
NEx

∂W
∂x  

2􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 dx (22)

另外,粘弹性地基所做的功ΠF2
可表示为:

 ΠF2=
1
2∫A

kWW2+kp
∂W
∂x  

2

+kd
∂W
∂t  

2􀭠
􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 dA

(23)

式中,kW 是 Winkler参数,kp 是Pasternak参数,

kd 表示粘性介质的阻尼系数.
  

将应变能、动能及功的表达式(20)~(23)代入

式(19),即得到控制方程:

 
∂2Mx

∂x2
+(kp-NEx)

∂2W
∂x2

-kd
∂W
∂t-kWW=I0

∂2W
∂t2

(24)

∫
h/2

-h/2
cos(βz)

∂Dx

∂x +Dzβsin(βz)
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥
􀪁
􀪁 dz=0

(25)

  

将微分形式的FGP结构的本构方程(7)、方程

(8)在厚度方向积分后,得到力与力矩方程为:

ΓμMx =Γη -D11
∂2W
∂x2 +E31Φ  (26)

∫
h/2

-h/2
ΓμDxcos(βz)  dz=Γη E15

∂W
∂x+X11

∂Φ
∂x  
(27)

∫
h/2

-h/2
[ΓμDzβsin(βz)]dz=Γη

F32

R W -X33Φ  
(28)

  

将上述力与力矩方程代入控制方程(24)、方程

(25),即得到波传播运动方程为:

Γη E31
∂2Φ
∂x2-D11

∂4W
∂x4  

 =Γμ kWW+(NEx -kp)
∂2W
∂x2

+kd
∂W
∂t+I0

∂2W
∂t2

􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

(29)

Γη -E31
∂2W
∂x2 +X11

∂2Φ
∂x2-X33Φ  =0 (30)

  

在Euler-Bernoulli梁几何假设下,对自由空间

中FGP纳米梁,波传播通解可假设为:

W(x,θ,t)

Φ(x,θ,t)  = Wm

Φm  exp[i(kx-ωt)] (31)

式中,Wm 表示纳米梁任意点处沿着x 方向波传播

的位移幅值,Φm 表示电势幅值,i为虚数单位,k 表

示波沿着x 方向传播时产生的波数.将通解方程

(31)带入运动微分方程(29)、方程(30)中,即得到

FGP纳米梁的波传播特征方程为:

(LBE +ωKBE -ω2HBE)
Wm

Φm  =0 (32)

式中,LBE、KBE 与HBE 分别为波传播通解方程中

的刚度系数矩阵、载荷系数矩阵以及质量系数矩

阵.角频率ω 值可由系数矩阵的行列式等于零求

得:

|LBE +ωKBE -ω2HBE|=0 (33)

1.3.2 非局部Timoshenko梁波传播模型
  

基于Timoshenko梁位移场,可得纳米梁中任

意点的位移分量及对应的应变分量如下:

u(x,z,t)

w(x,z,t)  = zψx(x,t)

W(x,t)  (34)

53



动 力 学 与 控 制 学 报 2024年第22卷

εxx =z
∂ψx

∂x  ,γxz =ψx +
∂W
∂x

(35)
  

故Timoshenko梁的运动方程为:

Γηκs A44
∂2W
∂x2 +

∂ψx

∂x  -E15
∂2Φ
∂x2  􀭠

􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

=Γμ kWW+ NEx -kp  ∂
2W
∂x2 +kd

∂W
∂t +I0

∂2W
∂t2

􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

(36)

Γη D11
∂2ψx

∂x2 -κsA55
∂W
∂x +ψx  +􀭠

􀭡

􀪁
􀪁

  E31+κsE15  ∂Φ∂x
􀭤
􀭥

􀪁􀪁 =ΓμI2
∂2ψx

∂t2
(37)

Γη E31
∂ψx

∂x  +E15
∂2W
∂x2 +

∂ψx

∂x  +􀭠
􀭡

􀪁
􀪁

 X11
∂2Φ
∂x2  -X33Φ

􀭤
􀭥

􀪁
􀪁 =0 (38)

式中,κs =5/6是剪切力校正系数,用于补偿恒定

剪切应力假设造成的误差.
  

Timoshenko梁谐波通解可假设为:

W(x,θ,t)

ψx(x,θ,t)

Φ(x,θ,t)

􀮠

􀮢

􀮡

􀪁􀪁
􀪁􀪁

􀮦

􀮨

􀮧

􀪁􀪁
􀪁􀪁 =

Wm

ψxm

Φm

􀮠

􀮢

􀮡
􀪁􀪁

􀪁􀪁

􀮦

􀮨

􀮧
􀪁􀪁

􀪁􀪁 exp[i(kx-ωt)] (39)

式中ψxm 表示纳米梁任意点沿着x 轴方向的转角

幅值.同理可求得角频率ω.

2 模型求解与分析
  

纳米梁由压电陶瓷中的PZT-4和PZT-5H材

料组成,其材料参数如表1[32].本文中除非特别指

定,否则使用以下参数:μ=1
 

nm2、η=2
 

nm2、h=
10nm、V =1V、N =2、kw =10GPa/nm、kp =

1kN/m、kd =1N􀅰s􀅰m-3.

表1 FGP
 

纳米梁的材料参数[32]

Table
 

1 Material
 

properties
 

of
 

FGP
 

nanobeam[32]

材料属性 PZT-4 PZT-5H

弹性常数/GPa
c11=132,c12=71,c13=73,c22=132,
c23=73,c33=115,c66=30.5

c11=126,c12=79.1,c13=83.9,c22=139,
c23=83.9,c33=117,c66=23.5

压电常数/C􀅰m2 e31=-4.1,e32=-4.1,e33=14.1,e15=e24=10.5 e31=-6.5,e32=-6.5,e33=23.3,e15=e24=17

介电常数/10-9C􀅰V-1􀅰m-1 s11=5.841,s22=5.841,s33=7.124 s11=15.05,s22=15.05,s33=13.02

密度/103
 

kg􀅰m-3 ρ=7.5 ρ=7.5

2.1 模型有效性验证

为验证理论模型正确性,用ZnO 和LiNbO3
的材料参数分别代替 FGP纳米梁中 PZT-4及

PZT-5H,得到在不同非局部参数μ 影响下,相速

度C 与波数k 的关系如图2所示.通过与Ebrahi-
mi等的研究结果[33]进行比较,验证了所提出模型

图2 不同非局部参数下,波数对纳米梁相速度的影响
Fig.2 The

 

influence
 

of
 

wave
 

number
 

on
 

the
 

phase
 

velocity
 

of
 

nanobeam
 

under
 

different
 

nonlocal
 

parameters

的准确性以及程序的有效性.

2.2 数值结果与讨论

2.2.1 尺度参数的影响
  

图3(a)、图3(b)为两种位移场下,非局部参数

μ 和长度尺度参数η 对纳米梁波传播频散特性的

影响.在所有情况下,频率均随着波数的增加而增

加.此外,频率f 随着μ 的增加而减小,说明非局

部弹性应力场可以表征结构的刚度软化效应.相应

地,η的增加导致了f 的增加,表明应变梯度应力

场可以预测结构的刚度硬化效应,且波数越大,尺
度参数对f 的影响程度越大.通过两幅图对比,可
以看出Euler-Bernoulli梁由于没有考虑剪切变形,
得到的波传播频率高于Timoshenko梁,且这种差

异性随着波数的增加而逐渐增加.
图4显示在不同波数k下,两个尺度参数间比

值μ/η对FGP纳米梁波传播频率的影响.从图中

可以看出,当μ/η>1时,基于NSGT得到的频率

都小于基于经典连续介质理论得到的频率,这是因
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图3 不同梁理论及尺度参数下,波数对纳米梁波传播特性的影响

Fig.3 The
 

influence
 

of
 

wave
 

number
 

on
 

wave
 

propagation
 

characteristics
 

of
 

nanobeam
 

under
 

different
 

beam
 

theories
 

and
 

scale
 

parameters

图4 不同梁理论及尺度参数比值下,波数对纳米梁波
传播特性的影响

Fig.4 The
 

influence
 

of
 

wave
 

number
 

on
 

wave
 

propagation
 

characteristics
 

of
 

nanobeams
 

under
 

different
 

beam
 

theories
 

and
 

scale
 

parameter
 

ratios

为当非局部效应占主导地位时,会使得梁的刚度减

弱,呈现出软化效应.相反地,当μ/η<1时,NSGT
获得的频率都大于基于经典连续介质理论得到的

频率,这是因为此时占主导地位的应变梯度效应使

得梁的刚度增强,呈现硬化效应,特别地,当μ/η=
1时,NSGT和经典连续介质理论得到的频率在数

值上是等价的,说明此时非局部参数导致的刚度软

化效应与长度尺度参数导致的硬化效应会相互抵

消.此外,当固定其中一个尺度参数,改变另一个

时,发现当波数较大时导致的频率变化大于波数较

小时对应的频率变化,进一步表明尺度效应在波数

较大时更加明显,而在波数较小时较为微弱.所以

关于纳米梁尺度效应的频散特性研究不仅需要考

虑尺度效应的作用,也需要关注波数的影响.
2.2.2 电压、梯度指数的影响

  

图5所示为外部电压V 的变化对波传播频率

f 及相速度C 的影响示意图.由图表明正电压的增

加导致了频率的减小,而负电压的增加导致了频率

的增加.这是因为对FGP纳米梁分别施加正电压

和负电压时,在纳米梁中会分别产生压力和拉力,

进而导致纳米梁刚度分别减弱和增强.除此之外,

图5 不同梁理论及电压下,波数对纳米梁波传播特性的影响:
(a)

 

频率;
 

(b)
 

相速度
Fig.5 The

 

influence
 

of
 

wave
 

number
 

on
 

wave
 

propagation
 

characteristics
 

of
 

nanobeams
 

under
 

different
 

beam
 

theories
 

and
 

voltages:
 

(a)
 

Frequency;
 

(b)
 

Phase
 

velocity
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可观察到在相同电压变化下,对Timoshenko梁波

传播频率及相速度的影响程度大于 Euler-Ber-
noulli梁对应的影响程度.

  

如图6可见梯度指数的增加降低了频率,这是

因为PZT-4和PZT-5H 组成的FGP纳米梁中,

PZT-5H的体积分数随着FG指数的增加而增加,

而PZT-5H的弹性模量小于PZT-4,所以FG指数

的增加降低了纳米梁的弹性模量,导致了波传播频

率降低.在相同的 N 值变化下,FG指数对Euler-
Bernoulli梁的波传播特性影响程度大于Timosh-
enko梁,这是电压与梯度指数对两种梁波传播特

性影响程度的不同之处.因此综合图5和图6,表
明可通过改变外部电压和内部构成的FG指数来

调控波在该结构中的传播频率.

图6 不同梁理论及梯度指数下,波数对纳米梁波传播特性的影响:
(a)频率;(b)相速度

Fig.6 The
 

influence
 

of
 

wave
 

number
 

on
 

wave
 

propagation
 

characteristics
 

of
 

nanobeams
 

under
 

different
 

beam
 

theories
 

and
 

gradient
 

indexs:
 

(a)Frequency;
 

(b)Phase
 

velocity

2.2.3 粘弹性基底的影响
       

图7为粘弹性基底的 Winkler系数kw、Pas-

ternak系数kp 及阻尼系数kd 对非局部 Euler-
 

Bernoulli梁和Timoshenko梁的波动特性影响.从
图7(a)~(d)中可看到,波传播频率f 和相速度C
随 Winkler系数及Pasternak系数的增大而增大,

因为较大的弹簧系数和剪切系数会增大纳米梁的

刚度.Winkler系数对波传播频率及相速度的影响

集中在k<4×108m-1 时,而当k>4×108m-1 时,

波传播特性对 Winkler系数的敏感度会迅速下降,

相反地Pasternak系数在波数越小时,对波传播的

影响程度越大.而从图7(e)、图7(f)中可以看到波

传播频率随着阻尼系数的增大而减小,这是因为阻
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图7 不同梁理论及粘弹性基底参数下,波数对纳米梁频率
(左轴)及相速度(右轴)的影响:(a)、(b)Winkler系数;

(c)、(d)Pasternak系数;
 

(e)、(f)阻尼系数

Fig.7 The
 

influence
 

of
 

wave
 

number
 

on
 

frequency
 

(left
 

axis)
 

and
 

phase
 

velocity
 

(right
 

axis)
 

of
 

nanobeams
 

under
 

different
 

beam
 

theories
 

and
 

viscoelastic
 

matrix
 

parameters:
 

(a)、(b)Winkler
 

coefficient;
(c)、(d)Pasternak

 

coefficient;
 

(e)、(f)Damping
 

coefficient

尼介质对波传播有阻滞作用,阻尼系数越大,FGP
纳米梁的刚度越小,且在波数越小时,阻尼介质对

波传播频率的影响越明显.显然,粘弹性基底参数

对波传播频率有明显的影响,且其影响程度与波数

密切相关.

3 结论
  

本文研究了尺度参数、FG指数和粘弹性基底

对FGP材料纳米梁波传播的影响.主要结论如下:
  

(1)
 

NSGT框架下非局部参数与应变梯度参

数的比值小于1时,纳米梁表现出刚度软化效应;

当比值大于1时,纳米梁表现出刚度硬化效应,且
随着比值及波数变大,对应的尺度效应越明显.

  

(2)
 

Euler-Bernoulli梁 的 波 传 播 频 率 高 于

Timoshenko梁.这是由于 Timoshenko梁考虑的

剪切变形导致了波传播频率的降低,且两种梁对应

的频率数值差异随着波数的增加而逐渐增加.
  

(3)
 

梯度指数越大,压电纳米梁的刚度越低,

频率越小;施加正电压会降低刚度,而负电压的增

加则有助于刚度增加.此外,梯度指数对 Euler-

Bernoulli梁中波频率的影响程度大于Timoshen-
ko梁,而电压对在两种梁波动特性的影响程度

相反.
  

(4)
 

粘弹性基底会显著地影响波传播频率及

相速度,在波数较小的情况下,Winkler及阻尼参

数对频率的影响更为显著,而在波数较大的情况

下,Pasternak参数的影响更为显著.

参考文献

[1] GUL
 

U,
 

AYDOGDU
 

M.
 

Wave
 

propagation
 

in
 

double
 

walled
 

carbon
 

nanotubes
 

by
 

using
 

doublet
 

mechanics
 

theory
 

[J].
 

Physica
 

E
 

Low-Dimensional
 

Systems
 

and
 

Nanostructures,
 

2017,
 

93:
 

345-

357.
 

[2] GAO
 

Z
 

Y,
 

ZHU
 

X
 

J,
 

FANG
 

Y
 

B,
 

et
 

al.
 

Active
 

monitoring
 

and
 

vibration
 

control
 

of
 

smart
 

structure
 

aircraft
 

based
 

on
 

FBG
 

sensors
 

and
 

PZT
 

actuators
 

[J].
 

Aerospace
 

Science
 

and
 

Technology,
 

2017,
 

63:
 

101-109.
 

[3] GUPTA
 

V,
 

SHARMA
 

M,
 

THAKUR
 

N.
 

Optimi-

zation
 

criteria
 

for
 

optimal
 

placement
 

of
 

piezoelectric
 

sensors
 

and
 

actuators
 

on
 

a
 

smart
 

structure:
 

a
 

tech-

nical
 

review
 

[J].
 

Journal
 

of
 

Intelligent
 

Material
 

Systems
 

and
 

Structures,
 

2010,
 

21(12):
 

1227-

1243.
 

[4] LI
 

Y
 

L,
 

FU
 

Y
 

M,
 

MAO
 

Y
 

Q.
 

Analysis
 

of
 

delami-

nation
 

fatigue
 

growth
 

for
 

delaminated
 

piezoelectric
 

elasto-plastic
 

laminated
 

beams
 

under
 

hygrothermal
 

conditions
 

[J].
 

Composite
 

Structures,
 

2011,
 

93
(2):

 

889-901.
 

[5] 夏巍,
 

冯浩成.
 

热过屈曲功能梯度壁板的气动弹性

颤振[J].
 

力学学报,
 

2016,
 

48(3):
 

609-614.

XIA
 

W,
 

FENG
 

H
 

C.
 

Aeroelastic
 

flutter
 

of
 

post-

buckled
 

functionally
 

graded
 

panels
 

[J].
 

Chinese
 

Journal
 

of
 

Theoretical
 

and
 

Applied
 

Mechanics,
 

2016,
 

48(3):
 

609-614.
 

(in
 

Chinese)
 

[6] ZHANG
 

N,
 

ZHAO
 

X,
 

ZHENG
 

S
 

J,
 

et
 

al.
 

Size-de-

pendent
 

static
 

bending
 

and
 

free
 

vibration
 

analysis
 

of
 

porous
 

functionally
 

graded
 

piezoelectric
 

nanobeams
 

[J].
 

Smart
 

Material
 

Structures,
 

2020,
 

29(4):
 

045025.
 

[7] VASHISHTH
 

A
 

K,
 

BAREJA
 

U.
 

Analysis
 

of
 

Love
 

waves
 

propagation
 

in
 

a
 

functionally
 

graded
 

porous
 

piezoelectric
 

composite
 

structure
 

[J].
 

Waves
 

in
 

Random
 

and
 

Complex
 

Media,
 

2022:
 

1-32.
 

93



动 力 学 与 控 制 学 报 2024年第22卷

[8] 陈明飞,
 

刘坤鹏,
 

靳国永,
 

等.
 

面内功能梯度三角

形板等几何面内振动分析[J].
 

应用数学和力学,
 

2020,
 

41(2):
 

156-170.

CHEN
 

M
 

F,
 

LIU
 

K
 

P,
 

JIN
 

G
 

Y,
 

et
 

al.
 

Isogeo-

metric
 

in-plane
 

vibration
 

analysis
 

of
 

functionally
 

graded
 

triangular
 

plates
 

[J].
 

Applied
 

Mathematics
 

and
 

Mechanics,
 

2020,
 

41(2):
 

156-170.
 

(in
 

Chi-

nese)
 

[9] FARAJPOUR
 

A,
 

GHAYESH
 

M
 

H,
 

FAROKHI
 

H.
 

A
 

review
 

on
 

the
 

mechanics
 

of
 

nanostructures
 

[J].
 

International
 

Journal
 

of
 

Engineering
 

Science,
 

2018,
 

133:
 

231-263.
 

[10] ERINGEN
 

A
 

C.
 

On
 

differential
 

equations
 

of
 

nonlo-

cal
 

elasticity
 

and
 

solutions
 

of
 

screw
 

dislocation
 

and
 

surface
 

waves
 

[J].
 

Journal
 

of
 

Applied
 

Physics,
 

1983,
 

54(9):
 

4703-4710.
 

[11] WANG
 

Y
 

Q,
 

LIANG
 

C,
 

ZU
 

J
 

W.
 

Wave
 

propaga-

tion
 

in
 

functionally
 

graded
 

cylindrical
 

nanoshells
 

based
 

on
 

nonlocal
 

Flügge
 

shell
 

theory
 

[J].
 

The
 

Eu-

ropean
 

Physical
 

Journal
 

Plus,
 

2019,
 

134(5):
 

233.
 

[12] GHORBANPOUR
 

ARANI
 

A,
 

MOSALLAIE
 

BA-

RZOKI
 

A
 

A,
 

KOLAHCHI
 

R,
 

et
 

al.
 

Pasternak
 

foundation
 

effect
 

on
 

the
 

axial
 

and
 

torsional
 

waves
 

propagation
 

in
 

embedded
 

DWCNTs
 

using
 

nonlocal
 

elasticity
 

cylindrical
 

shell
 

theory
 

[J].
 

Journal
 

of
 

Mechanical
 

Science
 

and
 

Technology,
 

2011,
 

25(9):
 

2385-2391.
 

[13] WANG
 

Q,
 

VARADAN
 

V
 

K.
 

Application
 

of
 

non-

local
 

elastic
 

shell
 

theory
 

in
 

wave
 

propagation
 

analy-

sis
 

of
 

carbon
 

nanotubes
 

[J].
 

Smart
 

Material
 

Struc-

tures,
 

2007,
 

16(1):
 

178-190.
 

[14] KUANG
 

Y
 

D,
 

HE
 

X
 

Q,
 

CHEN
 

C
 

Y,
 

et
 

al.
 

Anal-

ysis
 

of
 

nonlinear
 

vibrations
 

of
 

double-walled
 

carbon
 

nanotubes
 

conveying
 

fluid
 

[J].
 

Computational
 

Ma-

terials
 

Science,
 

2009,
 

45(4):
 

875-880.
 

[15] MINDLIN
 

R
 

D.
 

Second
 

gradient
 

of
 

strain
 

and
 

sur-

face-tension
 

in
 

linear
 

elasticity
 

[J].
 

International
 

Journal
 

of
 

Solids
 

and
 

Structures,
 

1965,
 

1(4):
 

417

-438.
 

[16] LIM
 

C
 

W,
 

ZHANG
 

G,
 

REDDY
 

J
 

N.
 

A
 

higher-or-

der
 

nonlocal
 

elasticity
 

and
 

strain
 

gradient
 

theory
 

and
 

its
 

applications
 

in
 

wave
 

propagation
 

[J].
 

Jour-

nal
 

of
 

Mechanics
 

Physics
 

of
 

Solids,
 

2015,
 

78:
 

298

-313.
 

[17] MA
 

L
 

H,
 

KE
 

L
 

L,
 

REDDY
 

J
 

N,
 

et
 

al.
 

Wave
 

propagation
 

characteristics
 

in
 

magneto-electro-elas-

tic
 

nanoshells
 

using
 

nonlocal
 

strain
 

gradient
 

theory
 

[J].
 

Composite
 

Structures,
 

2018,
 

199:
 

10-23.
 

[18] SHARIFI
 

Z,
 

KHORDAD
 

R,
 

GHARAATI
 

A,
 

et
 

al.
 

An
 

analytical
 

study
 

of
 

vibration
 

in
 

functionally
 

graded
 

piezoelectric
 

nanoplates:
 

nonlocal
 

strain
 

gradient
 

theory
 

[J].
 

Applied
 

Mathematics
 

and
 

Me-

chanics,
 

2019,
 

40(12):
 

1723-1740.
 

[19] 罗秋阳,
 

李成.
 

考虑非局部应变梯度效应的轴对称

压电纳米圆板热-力-电耦合振动[J].
 

振动工程

学报,
 

2022,
 

35(5):
 

1118-1129.

LUO
 

Q
 

Y,
 

LI
 

C.
 

Thermal-mechanical-electrical
 

coupling
 

vibration
 

of
 

axisymmetric
 

piezoelectric
 

cir-

cular
 

nanoplates
 

accounting
 

for
 

nonlocal
 

strain
 

gra-

dient
 

effects
 

[J].
 

Journal
 

of
 

Vibration
 

Engineer-

ing,
 

2022,
 

35(5):
 

1118-1129.
 

(in
 

Chinese)
 

[20] Wang
 

X
 

Y,
 

Luo
 

Q
 

Y,
 

Li
 

C,
 

Xie
 

Z
 

Y.
 

On
 

the
 

out-

of-plane
 

vibration
 

of
 

rotating
 

circular
 

nanoplates
 

[J].
 

Transactions
 

of
 

Nanjing
 

University
 

of
 

Aero-

nautics
 

and
 

Astronautics,
 

2022,
 

39(1):
  

23-35.
   

[21] 陈玲,
 

沈纪苹,
 

李成,
 

刘鑫培,
 

梯度型非局部高阶

梁理论与非局部弯曲新解法,
 

力学学报,
 

2016,
 

48
(1):

 

127-134.

Chen
 

L,
 

Shen
 

J
 

P,
 

Li
 

C,
 

Liu
 

X
 

P.
 

Gradient
 

type
 

of
 

nonlocal
 

higher-order
 

beam
 

theory
 

and
 

new
 

solution
 

methodology
 

of
 

nonlocal
 

bending
 

deflection[J].
 

Chinese
 

Journal
 

of
 

Theoretical
 

and
 

Applied
 

Me-

chanics,
 

2016,
 

48(1):
 

127-134.
 

(in
 

Chinese)
 

[22] ZHANG
 

R
 

Z,
 

LIANG
 

X,
 

SHEN
 

S
 

P.
 

A
 

Timosh-

enko
 

dielectric
 

beam
 

model
 

with
 

flexoelectric
 

effect
 

[J].
 

Meccanica,
 

2016,
 

51(5):
 

1181-1188.
 

[23] ŞIMşEK
 

M,
 

YURTCU
 

H
 

H.
 

Analytical
 

solutions
 

for
 

bending
 

and
 

buckling
 

of
 

functionally
 

graded
 

nanobeams
 

based
 

on
 

the
 

nonlocal
 

Timoshenko
 

beam
 

theory
 

[J].
 

Composite
 

Structures,
 

2013,
 

97:
 

378-386.
 

[24] RAHMANI
 

O,
 

PEDRAM
 

O.
 

Analysis
 

and
 

model-

ing
 

the
 

size
 

effect
 

on
 

vibration
 

of
 

functionally
 

gra-

ded
 

nanobeams
 

based
 

on
 

nonlocal
 

Timoshenko
 

beam
 

theory
 

[J].
 

International
 

Journal
 

of
 

Engi-

neering
 

Science,
 

2014,
 

77:
 

55-70.
 

[25] EBRAHIMI
 

F,
 

HOSSEINI
 

S
 

H
 

S.
 

Investigation
 

of
 

flexoelectric
 

effect
 

on
 

nonlinear
 

forced
 

vibration
 

of
 

piezoelectric/functionally
 

graded
 

porous
 

nanocom-

posite
 

resting
 

on
 

viscoelastic
 

foundation
 

[J].
 

The
 

Journal
 

of
 

Strain
 

Analysis
 

for
 

Engineering
 

Design,
 

2020,
 

55(1/2):
 

53-68.
 

[26] JANKOWSKI
 

P,
 

ZUR
 

K
 

K,
 

KIM
 

J,
 

et
 

al.
 

On
 

the
 

bifurcation
 

buckling
 

and
 

vibration
 

of
 

porous
 

nano-

04



第10期 刘娟等:粘弹性基底上功能梯度压电纳米梁波传播特性

beams
 

[J].
 

Composite
 

Structures,
 

2020,
 

250:
 

112632.
 

[27] ZANNON
 

M,
 

ABU-RQAYIQ
 

A,
 

AL-BDOUR
 

A.
 

Free
 

vibration
 

frequency
 

of
 

thick
 

FGM
 

spherical
 

shells
 

based
 

on
 

a
 

third-order
 

shear
 

deformation
 

the-

ory
 

[J].
 

European
 

Journal
 

of
 

Pure
 

and
 

Applied
 

Mathematics,
 

2020,
 

13(4):
 

766-778.
 

[28] MA
 

J
 

J,
 

LIU
 

F
 

J,
 

NIE
 

M
 

Q,
 

et
 

al.
 

Nonlinear
 

free
 

vibration
 

of
 

a
 

beam
 

on
 

Winkler
 

foundation
 

with
 

consideration
 

of
 

soil
 

mass
 

motion
 

of
 

finite
 

depth
 

[J].
 

Nonlinear
 

Dynamics,
 

2018,
 

92(2):
 

429-

441.
 

[29] EBRAHIMI
 

F,
 

BARATI
 

M
 

R.
 

Hygrothermal
 

effects
 

on
 

vibration
 

characteristics
 

of
 

viscoelastic
 

FG
 

nanobeams
 

based
 

on
 

nonlocal
 

strain
 

gradient
 

theory
 

[J].
 

Composite
 

Structures,
 

2017,
 

159:
 

433

-444.
 

[30] KE
 

L
 

L,
 

WANG
 

Y
 

S,
 

YANG
 

J,
 

et
 

al.
 

Free
 

vibra-

tion
 

of
 

size-dependent
 

magneto-electro-elastic
 

nano-

plates
 

based
 

on
 

the
 

nonlocal
 

theory
 

[J].
 

Acta
 

Me-

chanica
 

Sinica,
 

2014,
 

30(4):
 

516-525.
 

[31] WANG
 

S,
 

MAO
 

J
 

J,
 

ZHANG
 

W,
 

et
 

al.
 

Nonlocal
 

thermal
 

buckling
 

and
 

postbuckling
 

of
 

functionally
 

graded
 

graphene
 

nanoplatelet
 

reinforced
 

piezoelec-

tric
 

micro-plate
 

[J].
 

Applied
 

Mathematics
 

and
 

Me-

chanics,
 

2022,
 

43(3):
 

341-354.
 

[32] WANG
 

Y
 

Q,
 

LIU
 

Y
 

F,
 

ZU
 

J
 

W.
 

Analytical
 

treat-

ment
 

of
 

nonlocal
 

vibration
 

of
 

multilayer
 

functional-

ly
 

graded
 

piezoelectric
 

nanoscale
 

shells
 

incorpora-

ting
 

thermal
 

and
 

electrical
 

effect
 

[J].
 

The
 

Europe-

an
 

Physical
 

Journal
 

Plus,
 

2019,
 

134(2):
 

54.
 

[33] EBRAHIMI
 

F,
 

SEYFI
 

A.
 

Wave
 

propagation
 

anal-

ysis
 

of
 

smart
 

inhomogeneous
 

piezoelectric
 

nanosize
 

beams
 

rested
 

on
 

an
 

elastic
 

medium
 

[J].
 

Waves
 

in
 

Random
 

and
 

Complex
 

Media,
 

2022,
 

32(3):
 

1269

-1288.
 

14


