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Abstract This paper investigates the wave propagation characteristics of functionally graded piezoelec-
tric (FGP) nanobeams on viscoelastic substrates using nonlocal strain gradient theory (NSGT). Based
on NSGT, wave propagation model of Euler and Timoshenko beam model considering shear effect are es-
tablished. Then the governing equations of wave propagation are derived by Hamilton principle. By in-
troducing the general equations of wave propagation corresponding to two beam deformation theories,
the equations of motion are solved. Moreover the effects of shear effect, scale parameter, viscoelastic pa-
rameter, and FG index on wave propagation frequency and phase velocity are discussed numerically. The
results indicate that the effect of scale parameters on wave propagation frequency is closely related to
wave number, and the influences of voltage and gradient index on the propagation characteristics for two
kinds of beam waves are different. In addition, the viscoelastic base parameters have obvious influence

on the wave propagation frequency, and the degree of influence is closely related to wave number.
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