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Abstract Optical frequency combs are pivotal in the realm of precise measurement and time-frequency
standards. As technology advances, traditional optical frequency combs are trending towards miniaturi-
zation and integration, leading to the emergence of innovations such as micro-optical frequency combs
and micro-optomechanical coupling frequency combs. Leveraging the similarities between photons and
phonons, micromechanical frequency combs based solely on mechanical vibrations present novel opportu-
nities for sensor technology, quantum information communication, and applications in extreme environ-
ments. This paper first introduces a numerical simulation model of micromechanical frequency combs.
Based on it, it then elucidates the generation mechanisms of these combs, which include parametric exci-
tation, internal resonance, contact and impact effects, negative dissipation, and negative nonlinear fric-
tion. Furthermore, from a perspective of practical application, this paper aims to enhance the reader’s
understanding of the extensive applications of micromechanical frequency combs in related fields, their
distinctive characteristics and advantages, and provides a summary and outlook on future development

directions.
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