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Research Progress on Nanoscale Metamaterials

Jing Yabin Liu Rumeng Wang Lifeng'
(State Key Laboratory of Mechanics and Control for Aerospace Structures, Nanjing University of

Aeronautics and Astronautics, Nanjing 210016, China)

Abstract With the rapid development of micro and nano fabrication technology, nanoscale metamateri-
als have gradually become a hot research field. Nanoscale metamaterials have their unique advantages in
the regulation of high frequency elastic wave and the suppression of vibration and noise. Due to the com-
plexity of their service environment, the vibration of nanoscale metamaterials is often coupled with ther-
mal, optical and electrical factors. Its research is developing towards smaller sizes, higher frequencies
and multi-field coupling. In this paper, the experimental and theoretical progress of nanoscale metamate-
rials in vibration suppression is reviewed. Meanwhile, the research achievements of nanoscale metamate-
rials in thermal management and multi-field coupling are briefly reviewed. The future development pros-

pect and direction of nanoscale metamaterials are prospected.

Key words nanoscale metamaterials, phonon, vibration, bandgap characteristic, thermal trans-

port, multi-field coupling
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Fig. 2 Typical structures and dispersion relations of one-dimensional metamaterials: (a) The finite element model of

one-dimensional nano-beam metamaterial, phonon dispersion curve obtained by finite element and molecular dynamics simulation
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(b) One-dimensional metamaterial structure with multilayered PMMA and SiO, periodically stacked (left), dispersion curve obtained by

theoretical calculation and BLS measurement(right)['lsj ; (¢) Mass-spring model of multilayered h-BN/MoS, van der Waals

metamaterials (left) and dispersion curves of the metamaterials derived from mass-spring model (right)*®
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Thermal transport properties of typical metamaterial structures: (a) Molecular model and phonon dispersion of the pillared

; (b) Transmission electron microscopy image the period-stacked GaAs/AlAs superlattice, measured thermal

conductivity of the superlattice as a function of number of periods for different temperatures ®; (¢) Model of graphene/h-BN
heterostructure, the curve of the thermal conductivity of the heterostructure with the ratio of graphene area to
the total area of the structure (bottom left) and the number of interfaces (bottom right)
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