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Abstract In order to deal with the problem of severe vibration of pantograph and catenary system under
high-speed train operation and improve the current collection quality of pantograph-catenary, a composite
controller based on model predictive control (MPC) and disturbance feedforward compensation is pro-
posed to reduce the fluctuation of pantograph-catenary contact force. Firstly, based on the linearized
pantograph-catenary system, a model predictive controller based on particle swarm optimization (PSO)
is designed to optimize the fluctuation of pantograph-catenary contact force. Secondly, a generalized ex-
tended state observer (GESQ) is constructed to estimate the unmeasurable state in the pantograph-cate-
nary system and compensate the model uncertainty. Finally, the simulation verifies that the designed
controller can effectively reduce the fluctuation of the contact force under the condition of considering the

model uncertainty.
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