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Abstract Because of its simple structure, high power density and good reliability, the Contact-separation mode
triboelectric nanogenerator (CS-TENG) shows a good development potential in the field of ambient vibration en-
ergy harvesting. Considering the contact and collision force between the moving electrode and the fixed elec-
trode, the piecewise-linear motion differential equation of the moving electrode is derived. Combined with the e-
quivalent circuit differential equation of CS-TENG, an electromechanical coupling model considering the nonlin-
ear variation of electrode spacing is established. Harmonic balance method and arc length extension technique are
used to solve the dynamic output characteristics of CS-TENG and judge the stability of the system. Both numeri-
cal integration and dynamic tests are applied for verifying the accuracy of harmonic balance results. The effects of
excitation amplitude, contact stiffness and structural damping parameters on the dynamic output characteristics
of the system are discussed. The results are useful for the structural optimization design and practical develop-

ment of CS-TENG.
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Fig. 10 Output characteristics of the CS-TENG with different
vibration excitation amplitudes: (a) maximum values of the moving
electrode displacement vs. the excitation frequency, (b) RMS values
of the output current vs. the excitation frequency

(“X” denotes the unstable solution)
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Fig. 11 Output characteristics of the CS-TENG with different
values of contact stiffness: (a) maximum values of the moving
electrode displacement vs. the excitation frequency, (b) RMS
values of the output current vs. the excitation frequency
(“X” denotes the unstable solution)
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Fig. 12 Output characteristics of the CS-TENG with different
values of the structural damping coefficient: (a) maximum values
of the moving electrode displacement vs. the excitation frequency,
(b) RMS values of the output current vs. the excitation frequency

(“X” denotes the unstable solution)
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