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Abstract In order to explore the partial mechanical properties of functionally graded beams under ther-
mal conditions, the axial deformation field of functionally graded beams was established by using Gauss-
Lobatoo node and Chebyshev polynomial. The discrete governing equation of the axial deformation field
under thermal conditions was derived by Chebyshev spectrum method and Lagrange equation. By apply-
ing boundary conditions to the model with projection matrix method and using the comparison results of
uniform Timoshenko materials for auxiliary verification, the changes of the natural frequency of the sys-
tem under different temperature fields, material gradient index and anchorage conditions were analyzed.
At the same time, the thermal buckling temperature of the structure was studied. The results show that
under the same conditions, the natural frequencies of each order of the system decrease with the increase
of temperature, and the first-order frequency decreases the most. The fourth order natural frequency de-
creases the least. The variation trend of natural frequency of cantilever beam is the same as that of mate-
rial softening, and the decrease of the third-order frequency is more obvious than that of the first-order
frequency. The natural frequencies of each order of the structure can be optimized by adjusting the mate-

rial gradient index. With the increase of material gradient index, the thermal buckling temperature of

2024-02-28 W EI5E 1 K, 2024-03-20 LB ME .
T (5 EE E-mail:13718079394@163. com



46 8 %

TR B

2024 45 22 %

the material increases continuously, but for different functionally graded materials, the thermal buckling

temperature changes show different trends. This study can provide support for the research and engi-

neering application of functionally graded materials.
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vironment, finite element method
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Table 1 Formulas of boundary conditions

Boundary Continuous form condition Discrete form condition

conditions (z=08 x=L) (i=Nui=1)
Hinged(P) v=0.a"=0 ev=0,e.0,a
Clamped(C) v=0,a=0 e,v=0,e,04=0

Free(F) a'=0,0a—v'=0 e.Q,a=0,e,(a—Q,v)=0
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Table 2 T d d ffici f i d 1 ial
Materials Property(Unit) P, P, P, P, P,
Ti-6 Al-4V E(Pa) 0 122.56€9 —4.586e—4 0 0
v 0 0.2884 1.121e—4 0 0
0K 0 7.5788e—6 6.638e—4 —3.147¢e—6 0
o(kg/m®) 0 4429 0 0 0
ZrO, E(Pa) 0 244, 27¢9 —1.371e—3 1.214e—6 —3.68le—10
v 0 0.2882 1.33e—4 0 0
0K 0 12.766e—6 —1.491e—3 1.006e—5 —6.778e—11
o(kg/m®) 0 3000 0 0 0
Al Oy E(Pa) 0 349. 55e9 —3.853e—4 4.027e—7 —1.673e—10
v 0 0.26 0 0 0
0K Y 0 6.8269e—6 1.838le—4 0 0
o(kg/m*) 0 3800 0 0 0
Si, N, E(Pa) 0 348. 43e9 —3.07e—4 2.16e—7 —8.946e—11
v 0 0.24 0 0 0
0K~ 0 5.8723¢—6 9.095e—4 0 0
o(kg/m®) 0 2370 0 0 0
SUS304 E(Pa) 0 201. 04e9 3.079e—4 0 0
v 0 0. 3262 —2.002e—4 3.797e—17 0
0K~ 0 12.33e—6 8.086e—4 0 0
o(kg/m*) 0 8166 0 0 0
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R 3 PIRE T4 Timoshenko 5 IhEERE B Timoshenko ZHIE B M ZE (Hz)
Table 3 Natural frequencies of uniform Timoshenko beams and functionally graded Timoshenko
beams in thermal environment(Hz)

Temperature Boundary Inherent Uniform Timoshenko Beam Functionally Graded Timoshenko Beam
Frequency N=16 Abaqus Error N=16 Abaqus Error
Cc-C w 172.53 171.12 0.82% 232.00 230.61 0.60%
W, 470. 55 469.12 0.30% 636. 20 634. 81 0.22%
w4 909. 73 907. 89 0.20% 1232. 84 1230. 12 0.22%
w, 1478. 39 1476. 21 0.15% 2005. 38 2003. 91 0.07%
300K P-P o, 76.58 74.20 3.21% 103. 46 102. 91 0.53%
@, 304. 49 301. 89 0.86% 413. 40 411. 80 0.39%
w4 678.42 676.91 0.22% 921.92 920. 89 0.11%
o, 1190. 42 1187, 32 0.24% 1617. 60 1614. 83 0.17%
CF ®, 27.31 26. 42 3.37% 35. 39 34.92 1.92%
W, 170.19 169. 20 0.58% 227.65 224. 32 1.48%
w 472. 27 470.91 0.29% 638.58 635.62 0.46%
, 913.72 910. 40 0.37% 1239. 51 1237. 43 0.17%
350K C-C w, 136. 98 134.21 2.06% 187. 50 185. 50 0.87%
W, 421. 66 420.01 0.39% 577.23 575.21 0.35%
w0, 851. 71 849. 20 0.30% 1167, 44 1164. 31 0.27%
w, 1410.53 1408. 20 0.17% 1934. 16 1932. 30 0.10%
P-P w, 0 0 0 0 0 0%
w, 240. 26 237. 89 1% 334.75 331. 62 0.95%
ws 612.50 610. 20 0.38% 844. 96 841. 25 0.44%
w, 1118. 02 1115. 93 0.19% 1538, 52 535. 37 0.21%
CF ®, 26. 95 25.92 3.96% 35. 43 34. 87 1.61%
W, 167.91 165. 32 1.57% 226.70 223.92 1.24%
o, 465. 95 462. 82 0.68% 636. 02 634. 21 0.29%
W, 901. 47 899. 21 0.25% 1234.59 1231.98 0.21%
Cc-C @, 74.66 73.11 2.13% 111. 82 109.01 2.58%
@, 356. 27 354, 98 0.36% 498.73 497.71 0.20%
o, 780. 10 777. 40 0.35% 1086. 23 1083. 81 0.22%
W, 1329. 83 1326. 90 0.22% 1847.99 1845.98 0.11%
400K P-P (o 0 0 0 0 0 0
@, 129. 76 127. 89 1.46% 209. 81 207. 52 L%
w, 526. 16 523.78 0.46% 745. 42 743.72 0.23%
w, 1029. 64 1025. 89 0.37% 1441. 26 1440. 32 0.07%
C-F (o 26.58 25.61 3.77% 35.28 34.79 1.41%
W, 165. 60 163. 25 1.44% 225.73 223.43 1.03%
W, 459.53 457.21 0.51% 633. 26 630. 93 0.37%
w, 889. 06 886. 32 0.31% 1229. 23 1225. 80 0.28%
c-C o 0 0 0 0 0 0
w, 262.22 260. 00 0.85% 388. 60 385.91 0.70%
wy 691.15 687. 91 0.47% 985. 667 982. 72 0.30%
w, 1234. 20 1231.01 0.26% 1745.00 1743.92 0.06%
450K pP-pP [oN 0 0 0 0 0 0
W, 0 0 0 0 0 0
w, 107. 30 405. 89 0.35% 613. 50 611.08 0.40%
w, 920. 86 916.93 0.43% 1322.33 1320. 92 0.11%
C-F W, 26. 20 24.91 5.17% 35.13 33.87 3.73%
W, 163. 26 162. 61 0.40% 224.69 221.83 1.29%
wy 453.02 451. 90 0.25% 630. 27 629. 80 0.07%
w, 876. 45 874.21 0.26% 1223. 36 1219. 31 0.33%

23 PR RIS U R R R4 enko B2 09T IU B [ A 45K, 43 BI/E Chebyshev £
T2 Timoshenko %2R BE#E E # FF Timosh- Tz 5 Abaqus A FRIC 7 FAF it 5 9 25
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Table 4 The first four dimensionless natural frequencies
for the FGB with different temperature(Hz)

Materials ~ Temperature o, w, wy w,

300K 204.88 562.78 1091.52 1776. 34

Zr0,--SUS304 320K 186.57 536.94 1060.87 1740.77
340K 164.37 507.72 1027.25 1702.37

360K 136.22 474.41 990.28 1660.87

380K 96.79  435.97 949.53 1615.98

400K 0.00  390.78 904.44 1567.37

300K 212.37 580.39 1122.95 1825.33

320K 198.23 558.92 1095.42 1790.99

340K 181.83 535.29 1065.98 1754.91

ZrO,~Ti-6Al-4V 360K  162.38 509.11 1034.36 1716.88
380K  138.46 479.86 1000.29 1676.67

400K 106.87 446.81 963.40 1634.03

420K 55.30 408.93 923.29 1588.67

450K 0.00  339.05 855.87 1514.80
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Fig.5 The first three dimensionless natural frequencies
for FGB in thermal environment C-F (Hz)
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Table 5 The first four natural frequencies of the FGB
under different (Hz)

Material
Gradient Index @ @2 @3 @

n=0 0. 00 281.97  739.66  1319.42

n=0.5 40. 22 415.69 951. 00 1643.01
n=1 111.82 498,73  1086.23  1847.99
n=2 169.82  601.43  1250.80  2093.07
n=3 200. 49 660. 42 1343. 95 2231.06
n=+¢ 220.01 697.61 1403. 62 2319. 83
n=5 233.44  723.02 144532  2382.14
n=56 243.12  741.44  1476.21  2428.48
n=17 250. 33 755.32 1500. 04 2464. 40
n=38 255.84  766.05  1518.98  2493.10
n=9 260.15  774.51  1534.34  2516.59
n=10 263.58 781. 28 1547.01 2536. 19
n=20 278. 14 809. 74 1604. 04 2631.12
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