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Vibration Control of Bridge-TMDI System Based on Power Method

Chai Shizong'" Lan Haitao’
(1. CCCC Special Engineering Technology Co. , Ltd. , Wuhan 430071, China)
(2. The 4th Co. , Ltd, Zhongtie Major Bridge Engineering Group, Nanjing 210031, China)

Abstract Investigate a novel configuration of Tuned Mass Damper-Infinitesimal (TMDI) for achieving
longitudinal vibration control of bridges under seismic loads. Firstly, simplify the mechanical model of
the TMDI system installed on the bridge and present its power balance equation. Secondly, employ fre-
quency domain analysis to derive the corresponding displacement spectrum of the main structure, fol-
lowed by utilizing augmented lLLagrange optimization method to design the parameters. Finally, elucidate
the technical advantages of TMDI systems in controlling bridge vibrations from a power perspective and

discuss how bridge period and damping ratio impact TMDI’s vibration damping performance.

Key words bridges, earthquake, TMDI, power, frequency domain, optimal parameters
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