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摘要 类Chen-Qi四维混沌系统的渐近稳定控制的同步误差不能在有限时间内收敛到零,有限时间控制的

同步误差收敛到零的状况与初值有关.因此,本文应用固定时间控制技术,设计了自适应控制器和参数估计

律,试图使得驱动系统与同类型的参数未知的响应系统在固定时间内达到同步,完成了理论证明.应用数值

仿真考察同步误差收敛到零的状况.选取不同参数值,不同状态初值,考察状态时程图、同步误差曲线等.结

果表明:混沌运动时,固定时间内同步误差收敛到零的效果较好,与状态初值无关,收敛时间符合理论计算

值;周期运动时,固定时间内前三个状态的同步误差收敛到零的效果较好,收敛时间符合理论计算值,但第

四个状态的同步误差的收敛时间不符合理论计算值,其原因是系统存在的三次非线性项的不平衡、不匹配.
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Abstract For
 

Chen-Qi-like
 

four-dimensional
 

chaotic
 

system,
 

controllers
 

designed
 

with
 

Lyapunov
 

stabili-
ty

 

theory
 

make
 

synchronization
 

errors
 

converge
 

to
 

zero
 

asymptotically.
 

Finite-time
 

control
 

technique
 

im-
prove

 

it,
 

but
 

the
 

errors
 

are
 

various
 

with
 

initial
 

conditions.
 

Therefore,
 

fixed-time
 

control
 

technique
 

is
 

ap-
plied

 

to
 

design
 

an
 

adaptive
 

controller
 

and
 

parameter
 

estimation
 

law,
 

try
 

to
 

make
 

the
 

drive
 

system
 

syn-
chronizing

 

with
 

a
 

same
 

type
 

response
 

system
 

of
 

unknown
 

parameters
 

in
 

a
 

fixed
 

time.
 

which
 

is
 

proven
 

theoretically.
 

State
 

time
 

history
 

diagrams
 

and
 

synchronization
 

error
 

curves
 

are
 

investigated
 

by
 

numerical
 

simulation
 

with
 

various
 

parameters
 

and
 

initial
 

state
 

values.
 

The
 

results
 

show
 

that:
 

during
 

chaotic
 

mo-
tion,

 

the
 

effects
 

of
 

synchronization
 

errors
 

converge
 

to
 

zero
 

within
 

a
 

fixed
 

time
 

is
 

only
 

related
 

to
 

system
 

parameters,
 

not
 

dependent
 

of
 

the
 

initial
 

state
 

value,
 

and
 

the
 

convergence
 

time
 

conforms
 

to
 

the
 

theoreti-
cal

 

calculation;
 

during
 

periodic
 

motion,
 

the
 

effects
 

of
 

first
 

three
 

synchronization
 

errors
 

converge
 

to
 

zero
 

within
 

a
 

fixed
 

time
 

is
 

good,
 

their
 

convergence
 

time
 

conforms
 

to
 

the
 

theoretical
 

calculation.
 

However,
 

the
 

convergence
 

time
 

of
 

the
 

last
 

synchronization
 

error
 

does
 

not
 

conform
 

to
 

the
 

theoretical
 

calculation,
 

due
 

to
 

the
 

imbalance
 

and
 

mismatch
 

of
 

the
 

cubic
 

nonlinear
 

term
 

in
 

the
 

system.
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引言
  

非线性动力学的特点是混沌运动[1].由于它在

保密通信中的应用,混沌同步的研究是热点之

一[2-4].类Chen-Qi四维系统是一种典型的非线性

系统,它在不同的参数组合或初值条件下,可产生

混沌运动、周期运动等.在类Chen-Qi四维系统的

同步控制研究中,依据Lyapunov-Krasovskii泛函

理论设计的控制器,仅能实现渐近同步,同步误差

需要很长的时间才能收敛到0;其数值仿真也表

明,三个含有二次非线性项的同步误差能在有限时

间内收敛到0,但含有三次非线性项的同步误差,

在混沌运动和周期运动条件下,有限时间内收敛到

0的状况,存在差异[5].
为 解 决 这 一 问 题,借 助 有 限 时 间 稳 定 理

论[6-10],设计自适应控制器和参数估计律,证明了

有限时间同步.但数值仿真表明,有限时间内同步

误差趋近为零的效果仍然与系统的运动状态有关,

周期运动状态时,有限时间内同步误差趋近为零的

效果较好;混沌运动时,有限时间内同步误差趋近

为零的效果较差,主要是含有三次非线性项的同步

误差的收敛状况较差[11].
  

故而本文采用双幂函数积分技术,设计自适应

控制器和参数估计律,试图实现两个同类型的混沌

系统的固定时间同步[12].考察同步误差的收敛情

况,进行理论证明,数值仿真检验其效果.

1 类Chen-Qi系统的固定时间同步
  

类Chen-Qi驱动系统如式(1):

dx1

dt =a(y1-x1)+y1z1

dy1

dt =(c-a)x1+cy1-x1z1

dz1
dt =x2

1-y1z1-bz1-w1

dw1

dt =x1y1z1-x1z1-dw1
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􀪁􀪁

 

(1)

其中a,b,c,d 为正的常数,是驱动系统的未知参

数;(x1,y1,z1,w1)为状态变量;x10,y10,z10,w10

为初值.
  

参照文献[5]和文献[11],取初值x10,y10,

z10,w10 分别为0.1,-0.2,-0.5,0.3;取a=37,

b=3,d=38.当c=26时,解为混沌运动;当c=36

时,解为周期运动.
  

同类型的响应系统如式(2):

dx2

dt =a2(y2-x2)+y2z2+u1

dy2

dt =(c2-a2)x2+c2y2-x2z2+u2

dz2
dt =x2

2-y2z2-b2z2-w2+u3

dw2

dt =x2y2z2-x2z2-d2w2+u4
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(2)
  

其中:a2,b2,c2,d2 为响应系统的需要估计的未知

参数;(u1,u2,u3,u4)是待设计的同步控制器;
(x2,y2,z2,w2)为状态变量;x20,y20,z20,w20 为

系统(2)的初值.
    

误差系统为式(3):

de1
dt =a~(y2-x2)+a(e2-e1)+e2e3+

 e2z1+e3y1+u1

de2
dt =(c~ -a~)x2+(c-a)e1+c~y2+

 ce2-e1e3-e1z1-e3x1+u2

de3
dt =e21+2e1x1-e2e3-e2z1-e3y1-

 b
~
z2-be3-e4+u3

de4
dt =e1e2e3+x1e2e3+y1e1e3+z1e1e2+

 x1y1e3+x1z1e2+y1z1e1-z1e1-

 x1e3-e1e3-d
~
w2-de4+u4
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(3)

其中e1=x2-x1,e2=y2-y1,e3=z2-z1,e4=w2

-w1;a~=a2-a,b
~
=b2-b,c~=c2-c,d

~
=d2-d.

下面,先给出必要的定义和引理[13].
定义1: 非线性系统x·(t)=f(x),x(t0)=x0 的

平衡点(原点)是全局有限时间稳定的,且收敛时间

T(x0)是全局有界的,
 

即存在一个正数Tmax>0,
使得对∀x0 都满足T(x0)<Tmax,则该平衡点是

固定时间稳定的.
定义2: 如果存在有界的正常数t1满足0<t1<
Tmax,使得对 ∀x0,有lim

t→t1
|ei|=0;且 ∀t>t1 有

|ei|≡0,其中i=1,2,3,4.则称非线性系统(1)和
(2)实现固定时间同步.
引理1: 考虑非线性系统x·(t)=f(x),x(t0)=
x0.假定存在一个连续的径向无界的正定函数V
(x,t)满足:
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 ddtV
(x,t)=V

·
(x)≤-αVp -βVq,∀t>t0 (4)

  

且有V(t0)≥0成立.其中四个常数α>0,β>0,p
>1,0<q<1,则平衡点x=0是固定时间稳定的.

    

调整时间T 为:

T ≤Tmax=
1

α(p-1)+
1

β(1-q)
(5)

    

进一步,若p=m/n,q=ρ/φ,其中m,n,ρ,φ
是四个正奇数,且满足m>n,ρ<φ,则调整时间上

界为:

Tmax=
n

α(m-n)+
φ

β(φ-ρ)
(6)

引理2: 对于任意实数组τ1,τ2,…,τn 和常数r,

当0<r<1时,不等式(7)成立:

 (∑
n

j=1
|τj|)

r
≤∑

n

j=1

(|τj|)r ≤n1-r(∑
n

j=1
|τj|)

r (7)

当r>1时,不等式(8)成立:

 ∑
n

j=1

(|τj|r)≤(∑
n

j=1
|τj|)r ≤nr-1∑

n

j=1

(|τj|r)(8)

引理3: 对于任意实数组τ1,τ2,…,τn 和常数μ,

当0<μ<1时,不等式(9)成立:

∑
n

j=1

(|τj|μ+1)≥ (∑
n

j=1
|τj|2)

μ+1
2 (9)

  

控制目标是构造控制器和参数估计校正律,使
得系统(1)和系统(2)的状态达到固定时间同步.
定理: 构造自适应控制器和参数估计校正律如式

(10)、式(11):

u1=ae1-e3y1-K[sig(e1)]m
/n -L[sig(e1)]ρ

/φ

u2=-ce1-ce2+e3x1-K[sig(e2)]m
/n -

 L[sig(e2)]ρ
/φ

u3=-e21-2e1x1+e2e3+e2z1+e3y1+be3+

 e4-K[sig(e3)]m
/n -L[sig(e3)]ρ

/φ

u4=-e1e2e3-x1e2e3-y1e1e3-z1e1e2-
 x1y1e3-x1z1e2-y1z1e1+z1e1+x1e3+

 e1e3+de4-K[sig(e4)]m
/n -L[sig(e4)]ρ

/φ
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(10)

a·2=-(y2-x2)e1+x2e2-K[sig(a~)]m/n -

 L[sig(a~)]ρ/φ

b
·

2=z2e3-K[sig(b
~)]m/n -L[sig(b

~)]ρ/φ

c·2= -x2e2-y2e2-K[sig(c~)]m/n -L[sig(c~)]ρ/φ

d
·

2=w2e4-K[sig(d
~)]m/n -L[sig(d

~)]ρ/φ
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(11)

其中常数 K>0,
 

常数L>0,四个正奇数满足:m

>n,ρ<φ;[sig(ei)]γ=sign(ei)·|ei|γ,
 

sign(ei)

为符号函数,i=1,2,3,4.则在控制器(10)和参数

估计校正律(11)作用下,驱动系统(1)和响应系统

(2)的状态可实现固定时间同步.
证明: 对误差系统(3),试取候选Lyapunov函数:

 V(t)=
1
2
(e12+e22+e32+e42+a~2+b

~2+c~2+d
~2)

(12)

则V(t)是正定的、可微的函数,且V(t0)≥0.
    

V(t)沿着轨迹(3)的导数为:

V
·
=e1e

·
1+e2e

·
2+e3e

·
3+e4e

·
4+a~a~

·

+b~b~
·

+c
~
c~
·

+d
~
d~
·

 = ∑
i=1,2,3,4

{-Kei[sig(ei)]m
/n -Lei[sig(ei)]ρ

/φ}-

 {Ka
~[sig(a

~)]m/n +La
~[sig(a

~)]ρ/φ}-

 {Kb
~[sig(b~)]m/n +Lb~[sig(b~)]ρ/φ}-

 {Kc
~[sig(c

~)]m/n +Lc
~[sig(c

~)]ρ/φ}-

 {Kd
~[sig(d~)]m/n +Ld~[sig(d~)]ρ/φ} (13)

 

其中代入了式(10)和式(11).
    

应用引理2和引理3,可得:

V
·
= -K[|e1|1+m

/n+|e2|1+m
/n+|e3|1+m

/n+|e4|1+m
/n]-

K[|a
~
|1+m/n +|b

~
|1+m/n +|c

~
|1+m/n +|d

~
|1+m/n]-

L[|e1|1+ρ
/φ +|e2|1+ρ

/φ +|e3|1+ρ
/φ +|e4|1+ρ

/φ]-

L[|a
~
|1+ρ/φ+|b

~
|1+ρ/φ+|c

~
|1+ρ/φ+|d

~
|1+ρ/φ]

 
 

≤-K·81-(1+m/n)/2[2V](1+m/n)/2-L[2V](1+ρ/φ)/2

(14)
  

取α=K·81-(1+m/n)/2·2(1+m/n)/2>0,p=(1+m/

n)/2>1,β=L·2
(1+ρ/φ)/2>0,0<q=(1+ρ/φ)/2

<1,则由引理1得到误差系统(3)是固定时间稳定

的.,且调整时间上界为:

Tmax=
1
K
·2m/n-2 n

m-n+
1
K
·2-(1+ρ/φ)/2 φ

φ-ρ
(15)

  

证毕.
  

同时,从证明过程可见:固定时间同步的非线

性系统,其同步时间与初始值没有关系,即初始值

不会影响收敛时间,因此相对于有限时间同步而

言,固定时间同步更加符合实际中的应用.
  

下面考察非线性系统在混沌运动和周期运动

下,固定时间同步的效果.
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2 固定时间同步的数值仿真

例1: 根据式(10)和式(11)构造的自适应控制器

和参数自适应律,其中参数取值为:K=L=6,m=
11,n=3,ρ=5,φ=19,记为参数1.算得固定同步

时间为:Tmax=T1+T2=0.2247秒.
  

根据文献[11],系统(1)的初值x10,y10,z10,

w10 分别取为-10.1,20.2,-8.5,-9.3;分别取

参数为a=37,b=3,c=26,d=38;系统(2)的初值

x20,y20,z20,w20 分别取为1,-1,-7.5,3.5;分别取

参数a2(0)=30,b2(0)=4,c2(0)=25,d2(0)=40.
记上述给定的状态初值为初值1,给定的参数

值为参数1.根据上述算法,用 Matlab编写程序,

进行仿真,得到两个系统的状态变量的情况如图1
(a)、同步误差的情况如图1

 

(b).
    

由图1
 

(b)可见,类Chen-Qi四维系统作混沌

运动时,同步误差e1,e2,e3 在约0.2247秒基本衰

减到0,同步误差e4 在约0.3秒衰减到0.基本符

合调整时间上界的估计.
 

图1 混沌运动时的参数曲线

Fig.1 Parameter
 

curves
 

during
 

chaotic
 

motion

例2: 改取c=36,其余参数同例1,再仿真得到两

个系统的状态变量的情况如图2(a)、同步误差的

情况如图2(b).
  

由图2
 

(b)可见,类Chen-Qi四维系统作周期

运动时,同步误差e1,e2,e3 在约0.2247秒基本衰

减到0,同步误差e4 在约1.5秒(>0.2247
 

秒)才
衰减到0.

  

可知:此时混沌运动的误差同步情况好于周期

运动的误差同步情况;固定时间同步不依赖于初始

值,但与系统的参数相关.

图2 周期运动时的参数曲线

Fig.2 Parameter
 

curves
 

during
 

periodic
 

motion

例3: 改取系统(1)初值x10,y10,z10,w10 分别取

为-0.1,0.2,-0.5,0.3;系统(2)的x20,y20,z20,

w20 分别取为1,-1,0.5,-0.5;记上述给定的状

态初值为初值2.其余参数同例1.
   

重新仿真,得同步误差曲线如图3.可见混沌

运动时同步误差在约0.2247秒衰减到0.但e4 仍

存在微小的波动.此时同步误差的收敛情况较好.
 

例4: 取系统(1)初值x10,y10,z10,w10 分别为-0.1,

0.2,-0.5,0.3;系统(2)的初值x20,y20,z20,w20

分别为1,-1,0.5,-0.5;即为初值2.改取c=36,
其余参数同例1,重新仿真得同步误差曲线如图4.
可见周期运动时同步误差e1,e2,e3 在约0.2247秒

衰减到0,但同步误差e4 在约1.5秒衰减到0.
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图3 不同状态初值时的同步误差曲线(c=36混沌运动)
Fig.3 Synchronization

 

error
 

with
 

c=36
 

at
 

different
 

initial
 

values

图4 不同状态初值时的同步误差曲线(c=26周期运动)
Fig.4 Synchronization

 

error
 

with
 

c=26
 

at
 

different
 

initial
 

values

对比例3和例4可知,此时混沌运动同步误差

收敛状况好于周期运动时同步误差的收敛状况.
例5: 取驱动系统(1)

 

的初值与响应系统(2)的初

值同例1,即为初值1.改参数取值:K=L=3,m=
9,n=5,ρ=5,φ=11,记为参数2.算得固定同步时

间:Tmax=T1+T2=0.6440秒.重新仿真,同步误

差曲线如图5.由图5可见,混沌运动时同步误差

e1,e2,e3,e4 在约0.6440秒衰减到0.可见此时同

步误差的收敛情况较好.

图5 不同参数时的同步误差(c=26混沌运动)
Fig.5 Synchronization

 

error
 

with
 

c=26
 

at
 

different
 

controller
 

parameters

例6: 取驱动系统(1)
 

的初值与响应系统(2)的初

值同例1,即为初值1.改参数取值:K=L=3,m=
9,n=5,ρ=5,φ=11,即为参数2.算得固定同步时

间:Tmax=0.6440秒.改取c=36,重新仿真,同步

误差曲线如图6.可见周期运动时同步误差e1,e2,

e3 在约0.6440秒衰减到0,但e4 在约1.8秒衰减

到0.

图6 不同参数时的同步误差(c=36周期运动)
Fig.6 Synchronization

 

error
 

with
 

c=36
 

at
 

different
 

controller
 

parameters
  

由例5和例6对比可知,此时混沌运动的同步

误差收敛情况,好于周期运动的情况.
  

对比例1和例5可知,混沌运动时,同步误差

的收敛时间由0.3秒变为0.6440秒,调整时间受

参数值的影响比较明显.
    

对比例2和例6可知,周期运动时,同步误差

e4 的收敛时间明显不同于e1,e2,e3 的收敛时间.
例7: 改取系统(1)初值,系统(2)的初值为初值

2.改参数取值:K=L=3,m=9,n=5,ρ=5,φ=
11,即为参数2.其余参数同例1.算得固定同步时

间为:Tmax=0.6440秒.取c=26,重新仿真,得同

步误差曲线如图7.

图7 不同参数,不同初值时的同步误差(c=26混沌运动)
Fig.7 Synchronization

 

error
 

with
 

c=26
 

at
 

different
 

controller
 

parameters,
 

and
 

different
 

initial
 

values
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由图7可见,此时同步误差e1,e2,e3,e4 在约

0.6440秒衰减到0,同步误差的收敛情况较好.
例8: 在例7的基础上,改取c=36,其余参数同

例7.算得固定同步时间:Tmax=0.6440秒.重新仿

真,得同步误差曲线如图8.
  

由图8可见,此时周期运动的同步误差e1,e2,

e3 在约0.6440秒衰减到0,但e4 在约8.743秒仍

有数值1.297.可见同步误差的收敛情况不好.
  

对比例7和例8可知,混沌运动时同步误差的

收敛情况,好于周期运动时同步误差的收敛情况.
  

对比例1、例3、例5和例7可知,混沌运动时,

同步误差的收敛情况较好,收敛时间与式(15)的计

算值基本一致,它仅与参数值有关,与状态的初值

无关.

图8 不同参数,不同初值时的同步误差(c=36周期运动)
Fig.8 Synchronization

 

error
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c=36
 

at
 

different
 

controller
 

parameters,
 

and
 

different
 

initial
 

values

对比例2、例4、例6和例8可知,周期运动时,

同步误差的收敛状况相似,同步误差e4 的收敛情

况不好.综合以上各例,将仿真结果列表如表1:

表1 仿真结果汇总

Table
 

1 Summary
 

of
 

simulation
 

results

序号 运动模式 条件
e1,e2,e3
收敛时间/s

e4 收敛时间/s

例1 混沌 初值1,参数1 0.2247 0.3

例2 周期 初值1,参数1 0.2247 1.5

例3 混沌 初值2,参数1 0.2247 02247

例4 周期 初值2,参数1 0.2247 1.5

例5 混沌 初值1,参数2 0.6440 0.6440

例6 周期 初值1,参数2 0.6440 1.8

例7 混沌 初值2,参数2 0.6440 0.6440

例8 周期 初值2,参数2 0.6440 9.0
   

综上可知,当四维类Chen-Qi系统处于混沌运

动时,固定时间稳定理论得到的同步误差的收敛时

间与初始状态无关,但与系统参数有关,包括系统

本身的参数和自适应控制器引入的参数K,L,m,

n,ρ,φ.且同步误差的收敛时间的数值与理论计算

结果基本相符.
  

当类Chen-Qi系统处于周期运动时,只有同步

误差e1,e2,e3 的收敛时间符合固定时间稳定理论

的规律,而同步误差e4 的收敛时间不符合.其原因

是e1,e2,e3 都只存在二次非线性,e4 存在三次非

线性项,从而产生不平衡、不匹配,进而导致误差的

收敛情况差异较大.这是系统本身造成的.

3 结论
  

由Lyapunov稳定性理论设计的自适应控制

器和参数估计律,仅能实现类Chen-Qi四维超混沌

系统的渐近同步控制.应用有限时间稳定理论,同
步误差的收敛时间又与初始状态值有关,当初始状

态偏离平衡点无穷远时,同步误差的收敛时间为无

穷大.为解决这一问题,本文应用固定时间控制理

论,设计了自适应控制器和参数估计律,试图实现

两个同类型的类Chen-Qi四维超混沌系统的固定

时间同步,完成了理论证明,并用数值仿真检验了

它的效果.
  

数值计算的结果表明:同步误差在固定时间内

收敛到0的效果,与系统参数c有关,也与控制器

参数K,L,m,n,ρ,φ 的取值有关.当系统作混沌

运动时,它与系统的初始状态的取值无关.当系统

作周期运动时,由于存在三次非线性项,与e1,e2,

e3 的收敛情况相比,e4 的收敛速度较慢.这是系统

本身的不平衡、不匹配导致的.
  

如何改进算法,彻底消除这种不平衡,使得四

个同步误差收敛情况一致,有待深入研究,例如改

善调整时间的估计[14],或采用预定时间控制技术

设计控制器[15-19].
    

本文的研究表明,固定时间稳定理论运用于类

Chen-Qi四维系统的混沌运动时,其收敛时间的确

与系统的状态初值无关的,收敛时间符合理论计算

值;但对于系统的周期运动,符合情况不好.本文有

助于理解Chen-Qi四维混沌系统自适应同步.
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