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Abstract A class of single-degree-of-freedom piecewise smooth mechanical vibration systems was stud-
ied. The modes and distribution regions of sub-harmonic vibrations in the two-parameter plane are nu-
merically calculated. The bifurcation characteristics, stability and transmigration laws of sub-harmonic
vibrations in the sub-harmonic inclusion regions are investigated in detail by using the continuation
shooting method. The results show that the grazing bifurcation is continuous in the elastic impact sys-
tem. In the sub-harmonic inclusion regions, PD-type grazing bifurcation are prevalent, and SN-type
grazing bifurcation and subcritical period-doubling bifurcation cause jumps and hysteresis phenomenon of
system response. Multiple attractors coexist in the high-frequency sub-harmonic inclusion regions, and

the chaotic attractor ends up at the boundary crisis.
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Vibration Control and Energy Harvesting of Lattice Sandwich Beam

under Aerodynamic Forces

Wang Xiangyu Zang Jian'
(College of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China)

Abstract This paper proposed a multifunctional lattice sandwich beam (M-LSB) structure. Firstly, a
Nitinol-Steel wire rope nonlinear energy sink (N-NES) is installed inside the lattice sandwich beam to a-
chieve vibration suppression. Secondly, a giant magnetostrictive lamina (GML) that is laid on the beam
to achieve energy harvesting through the Villari effect of GML. Based on the the Hamilton’s principle
and Newton's second law, the equations of motion of the coupled system under aerodynamic environment
are established. The time-domain response of the multifunctional lattice sandwich beam with and with-
out N-NES is obtained by using the Runge-Kutta method to calculate the dynamic equations, and the vi-
bration control effect of N-NES and the energy harvesting efficiency of GML are verified. The results
show that the N-NES can achieve efficient vibration suppression and the GML can efficiently harvest the

vibration energy of the lattice sandwich beam under aerodynamic environment.

Key words lattice sandwich structure, Nitinol-Steel wire rope nonlinear energy sink, giant magne-

tostrictive lamina, energy harvesting
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Table 1  Structural parameters of lattice sandwich beam
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Table 2 Parameters of supersonic {low
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Table 3 Parameter values of different Nitinol-Steel

wire ropes configurations

Snj by (N/m) £y (N/m®) ¢ (Ns/m) r, (Ns/m®) r,(Ns"/m®)

Sla ——  4.16x10% 118.2  1.699x10° 5.249X10"
S2a 5966 —— 52.1 1.259%10° 9876
S2b 4523 —— 16.5 1.077X10° 2608
S3a 6016 3.23Xx10" 50.0 3.396X10°  2.26X10"
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Fig. 7 Comparison of the amplitude attenuation for different
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Table 4 Structural properties of GML fabricated from
different materials

Parameters Value
Mo 47X10 "H/m
“, 230y, H/m
N 1000
R, 36. 4
R, 50
E" of Terfenol-D 110GPa
E" of Gafenol 70GPa
oM of Metglas 110GPa
d 5 of Terfenol-D 11m/A
d 45 of Gafenol 34m/A
d 45 of Metglas 80m/A
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Fig. 12 GML energy harvester simulation: output voltage

at different flow rates
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Table 5 Load resistance R, for various numbers N
of coil turns

Parameters N =1000 N =1500 N =2000

R./Q 18.2 36.4 54.6 72.8

TESCH %5 8 B RE R AR F
RETEHFE) L EFE N =1000 1E N g R

12K e P R CRP
ERSHL

-5
35 x10

035
——Metglas
3 -+++-+- Gafenol = 03 —— Metglas
=== Terfenol-D E """" Gafenol
Z2s 3025 —-~ Terfenol-D
s %10 2
£ 2 3 g 02
& H
B15 2 <015
£ f
4 =
< 1 g ot
= 005
05 X
0 .
T RNRT (1 N
0 0 L 0
0 1 2 3 4 0 2 4 6 8

Time/s Time/s
(2) Ru=10Q B F9 463 i Th 3 (b) Ru=10Q BT EIREEEEAL
(a)Output power at R.=10Q (b)Energy harvested at R.=10Q

4 -3
15 x10 8 x10
——Metglas
+++ Gafenol 5 ——Metglas
- — == Terfenol-D g 6 «+Gafenol
< 2 - -
T SRS E Terfenol-D
g -
s §*
H =
505 80
é g2
=
o bz
0 1 2 3 4 0 2 4 6 8
Time/s Time/s
(©)RL=364 QBT B R T (D R=364 QT HIREEFAL
(c)Output power at RL.=364Q (d) Energy harvested at RL=36.4Q
-4
LS80l 0.025
—— Metglas
-+wser- Gafenol
-

0.8 —-—Terfenol-D || £ 0.02 (——Metglas
z i 3 v+ Gafenol
So0s6 T % 0.015 —-= Terfenol-D
s -

2 6 H

S04 =< 001
& 4 &
5 &
<] 2

02 2 5 0.005

0.5 1] [
0 0
0 1 2 3 4 0 2 4 6 8

Time/s Time/s
(&) Ru=50Q i % tH Th 3 (f) Re=50Q B A BE B HE 1L
(e) output power at RL=50Q (f) Energy harvested at R.=50Q

14 A FE A GML B 2R 4 2%
Fig. 14 Simulation of GML energy harvester with
different materials



BT

EAETAE IO RAE TG N T R RS S RE iR AR 47

GML # B X} fE 1 SR 4R 19 52 Wi 52100 & UL, 4n &
14Ca) ~ Ce) 7R, Bifi 75 B 48 F BEL 1% 385 o 6 o 2 2%
Wbl 2z 3o, B 14 (b (B 14 () ATE] 14 (D) FoR
GML Xt gE s FE L &2 . 7] LA Y, Metglas 1Y AE
HRENCR R .

3458, GML e A &% 78 22 4k 3l i /8 rh R
RREE , Hh Metglas X B & R B HOR A K,
JFHAE R, 7 30Q~40Q {1 F H B, GML i H 2
R AU B AR S BN BRI 36, 4Q,
S BELF P BEL K51 A (] s i i g %6 A KL 3 5 I
Bt GML S50 L)L A 3% b R 4 i

2.3 ik

T R G MR R AN A B AL % N-NES /Y
R e 0N 2 B BR Sl AR B0 T GMIL B 2 AS [F]

16500 g 16500
14845 ¢ g 14845
13190 | - 13190 |
11535 | 11835
09830 | 0.9880 |
0.8225 | 0.8225
- 0.6570 | - 0.6570
04915 |
0.3260
0.1605
-0.0050 |

0.4915
0.3260
0.1605
-0.0050 |

N
(b) N-NES %23 x=0.2m
(b) N-NES loading x=0.2m

ot
(a)N-NES %23 x=0.1m
(a) N-NES loading x=0.1m

1.6500 = 1.6500
14845 ! 14845
13190 10 13190 |
11535 A\ i 11535 |
0.9880 09880 |
0825 | s 0.8225
0.6570 0.6570

04915 04915 |
0.3260
- 0.1605 |

--0.0050 '

0.3260
- 0.1605
-0.0050

~ -
(c)N-NES % x=0.3m
(c) N-NES loading x=0.3m

(d) N-NEE@Z% i
(d) N-NES loading x=0.4m
15 N-NES 7 [ % % i B i 4% 3

Fig. 15 N-NES loaded beam displacements at different locations

1785

=9 e
(b) N-NES 3% x=0.2m
(b) N-NES loading x=0.2m

(2) N-NES %3 x=0.1m
(a) N-NES loading x=0.1m

17.85 T 1785
16.06 16.06
1427 |
12.48
1069
890
‘Bl
532
353
174
-0.05

1427 |
1248
1069
890 |
o
532
3B
L
005 |

9

-
(c) N-NES %3 x=03m
(c) N-NES loading x=0.3m

i
(d) N-NES %% x=0.4m
(d) N-NES loading x=0.4m

16 R[S #EE T GML f9F )4 ih o R
Fig. 16 Effect of air velocity on output power for N-NES
at different positions

B d D) R A B AR B IRBE T i SR AR A
HEAT T =24l B, AR HEAT 5 B 4347

K 15 RR T N-NES A [A] 42 %6 o B 32 0 4k i
— B BRI R =4 N 15 RRT LA L N-
NES i 5 i 22 (14 v o5, R BOR 847 . JF H N-NES
A % S 4 JR) I AR

K16 SR TR 2 HE T, 7558 — N
SRR 0N AN TR AL A B Dy L e R D
N-NES B}, 68 & R 5 2408 f fmr. i th D 3278 2 b il
Ab F S T SR GML BE R R AR
X5 =B R — .

3 i

ASCHE T TR SR e B e 4 N-NES
FEAE R EAIE GML LU Wl A £ 2 fig 5 B e s
S0 32 sh D i p e 0 D AR AR T A
oL B 5 AR AT T R S I S 1 R RE R
EAEL. 0T LA H DL R 4598 .

(1)N-NES 1] 52 3T 2004 I 3h 1 i % 18 8
g R A S AL PR Bh R A, BN Sk
A g7 S SN R 1 ) B AR

(2)NES 1] DLl 3 i 4% o 5, BH 2 AR 26 14 W)
JE SR A5 3 T 4 A IR 3 4 U ROR

(3) A LA 5k o AR 9 24 4 A8 ALK B AF N-NES
44 0 400 205 R 5 DT AR A5 BT A 1) i 2 4

(4)N-NES X 55 B J& 568 52 1 4 Jmy el 41 250 21 A0
F NES.

(5) 38 3 LAk 8 1 B A 4 A1 BE AT GMIL RE R
RIS B, W] DA i R AR I RIR.

(6) E = Tl 8 1% B 4 B BL b, Metglas #1 B
14 i 1 R A RO R

[1] STEEVES C A, HE M Y, EVANS A G. The in-
fluence of coatings on the performance of structural
heat pipes for hypersonic leading edges [J]. Journal
of the American Ceramic Society, 2009, 92(2): 553
—555.

(2] GUO X Z, CAI X B, ZHU L, et al. Preparation
and properties of SiC honeycomb ceramics by pres-
sureless sintering technology [J]. Journal of Ad-

vanced Ceramics, 2014, 3(1). 83—88.



48

8 %

5 &

2024 45 22 4

E

[3]

[4]

(5]

(6]

[7]

(8]

9]

(10]

[11]

[12]

[13]

[14]

[15]

STEEVES C A, WADLEY H N G, MILES R B, et
al. A magnetohydrodynamic power panel for space
reentry vehicles [J]. Journal of Applied Mechanics,
2007, 74(1) . 57—64.

RIZOV V, SHIPSHA A, ZENKERT D. Indenta-
tion study of foam core sandwich composite panels
[J]. Composite Structures, 2005, 69(1): 95—102.
LIU H, LV Z, WU H. Nonlinear free vibration of
geometrically imperfect functionally graded sand-
wich nanobeams based on nonlocal strain gradient
theory [J]. Composite Structures, 2019, 214, 47—
61.

PAN SD, WU L Z, SUN Y G, et al. Fracture test
for double cantilever beam of honeycomb sandwich
panels [J]. Materials Letters, 2008, 62(3): 523 —
526.

QUEHEILLALT D T, MURTY Y, WADLEY H
N G. Mechanical properties of an extruded pyrami-
dal lattice truss sandwich structure [J]. Scripta Ma-
terialia, 2008, 58(1): 76 —79.

LI XD, CONGF L, ZHANG Y W, et al. Effect of
high-low temperature on the compressive and shear
performances of composite sandwich panels with py-
ramidal lattice truss cores [J]. Composite Struc-
tures, 2022, 292 115675.

ZHANG Y W, L1Z, XUKF, etal. A lattice sand-
wich structure with the active variable stiffness de-
vice under aerodynamical condition [J]. Aerospace
Science and Technology, 2021, 116: 106849.
CHEN L Q, LI X, LU Z Q. et al. Dynamic effects
of weights on vibration reduction by a nonlinear en-
ergy sink moving vertically [J]. Journal of Sound
and Vibration, 2019, 451: 99—119.

ZHANG Z, LU Z Q, DING H, et al. An inertial
nonlinear energy sink [J]. Journal of Sound and Vi-
bration, 2019, 450: 199—213.

TRIPATHI A, GROVER P, KALMAR-NAGY T.
On optimal performance of nonlinear energy sinks in
multiple-degree-of-freedom systems [J]. Journal of
Sound and Vibration, 2017, 388: 272—297.

DING H, CHEN L Q. Designs, analysis, and ap-
plications of nonlinear energy sinks [J]. Nonlinear
Dynamics, 2020, 100(4) . 3061 —3107.

ZHANG Y W, LU Y N, ZHANG W, et al. Non-
linear energy sink with inerter [J]. Mechanical Sys-
tems and Signal Processing, 2019, 125. 52—64.
ZANG J, CAO R Q, ZHANG Y W, et al. A lever-

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

enhanced nonlinear energy sink absorber harvesting
vibratory energy via giant magnetostrictive-piezoe-
lectricity [J]. Communications in Nonlinear Science
and Numerical Simulation, 2021, 95: 105620.
ZANG J, CAO R Q, FANG B, et al. A vibratory
energy harvesting absorber using integration of a le-
ver-enhanced nonlinear energy sink and a levitation
magnetoelectric energy harvester [J]. Journal of
Sound and Vibration, 2020, 484: 115534.

BRE, 28, Arx, % BT AL MR &R
MR SRR IR SR LT ], b 02 S =4
2023, 21(1): 30—35.

TONG J H, PENG J, ZUO Y, et al. Vibration
suppression of deep-sea flexible tension legs based
on nonlinear energy sink [J]. Journal of Dynamics
and Control, 2023, 21(1): 30—35. (in Chinese)
FE, T &, BRI BE. 08 8 T 0 5 4k 4 vk
aem B[] 3h oy S 2= 4. 2021, 19
(6): 46—51.

WANG G X, DING H, CHEN L Q. Optimization
of a nonlinear energy sink with double springs and
harmonic excitation [ J]. Journal of Dynamics and
Control, 2021, 19(6): 46—51. (in Chinese)
ZEUAh, BB, eh IR S AR KRR DAL S
R R S MR AT 5 LT, 8h 1% 5 S iR
2020, 18(2): 76—381.

L1J W, ZHAO Z F. Vibration reduce for an impact
damper coupled with nonlinear energy sink [ ]J].
Journal of Dynamics and Control, 2020, 18(2): 76
—81. (in Chinese)

CARBONI B, LACARBONARA W. Nonlinear vi-
bration absorber with pinched hysteresis: theory and
experiments [ J]. Journal of Engineering Mechanics,
2016, 142(5):04016023.

CARBONI B, LACARBONARA W. A new vibra-

tion absorber based on the hysteresis of multi-con-

figuration NiTiNOL-steel wire ropes assemblies
[J]. MATEC Web of Conferences, 2014, 16:
01004.

ZHANG Y W, WANG Z J, CAO M, et al. Vibra-
tion control of composite laminate via NiTiNOL-
steel wire ropes: modeling, analysis, and experi-
ment [J]. Mechanical Systems and Signal Process-
ing. 2023, 204; 110775.

FRIESC, Jlfd. WARAE TR G S WL R
AEBR B B2 A Ik g 4R I LT 1. 3 J1 2% 5 4% il 2 4,
2023, 21(11): 19—26.



57

EAETAE IO RAE TG N T R RS S RE iR AR 49

[24]

[25]

[26]

[27]

(28]

(29]

[30]

[31]

ZHANG B W, ZANG J. Vibration control of func-
tionally graded beam coupled with NiTiNOL-steel
wire ropes under hygrothermal environment [ ]J].
Journal of Dynamics and Control, 2023, 21(11). 19
—26. (in Chinese)

ZHANG Y W, SUC, NIZ Y, et al. A multifunc-
tional lattice sandwich structure with energy harves-
ting and nonlinear vibration control [J]. Composite
Structures, 2019, 221: 110875.

GUO X G, ZHANG Y L, FANK Q, et al. A com-
prehensive study of non-linear air damping and
“pull-in” effects on the electrostatic energy harvest-
ers [T
2020, 203: 112264.

Fifg, wE, BEK, F. BN )k AR R R
an A A AR A (], 4R35 whif . 2022, 41
(7). 88—96.

WANG H, XU G, YANG C L, et al.

Energy Conversion and Management,

Model and
test analysis of prestressed piezoelectric energy har-
vester [ J]. Journal of Vibration and Shock, 2022,
41(7): 88—96. (in Chinese)

MR, BRIV, TR, %, Z MRS A s AR R
EPERe AT, JRF 5 ik, 2022, 41(4): 93—
100.

SHI H T, WEI S, DING H, et al. Performance a-
nalysis of piezoelectric energy harvesting of a Z-
shaped beam [J]. Journal of Vibration and Shock,
2022, 41(4): 93—100. (in Chinese)

YANR G, LIUW Y, WU Y C, et al. Reactor vi-
bration reduction based on giant magnetostrictive
materials [J]. AIP Advances, 2017, 7(5): 056677.
WANG Z S, WANG H B, LIU X H. Dynamic re-
sponse of the output force of giant magnetostrictive
materials [ J]. International Journal of Mechanics
and Materials in Design, 2020, 16(4): 685—691.
CHENG G, YONG K, KE J. Modeling the dynam-
ic behavior of manipulator joint based on giant mag-
netostrictive material [J]. The Review of Scientific
Instruments, 2023, 94(6): 065016.

FANG Z W, ZHANG Y W, LI X, et al. Integra-

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

tion of a nonlinear energy sink and a giant magnetos-
trictive energy harvester [J]. Journal of Sound and
Vibration, 2017, 391: 35—49.

RIESGO G, ELBAILE L, CARRIZO J, et al. Vil-
lari effect at low strain in magnetoactive materials
[J]. Materials, 2020, 13(11): 2472,

WANG L, YUAN F G. Vibration energy harves-
ting by magnetostrictive material [J]. Smart Mate-
rials and Structures, 2008, 17(4): 045009.
BERBYUK V. Vibration energy harvesting using
Galfenol-based transducer [ C]//Active and Passive
Smart Structures and Integrated Systems 2013.
Bellingham, Washington: SPIE, 2013.

ZHAN Y S, LIN C H. A constitutive model of cou-
pled magneto-thermo-mechanical hysteresis behavior
for giant magnetostrictive materials [J]. Mechanics
of Materials, 2020, 148. 103477,

ZHOU H M, LIM H. LI X H, et al. An analytical
and explicit multi-field coupled nonlinear constitutive
model for Terfenol-D giant magnetostrictive material
[J]. Smart Materials and Structures, 2016, 25(8) .
085036.

CHEN Y K, YANG X, YANG M Z, et al. Charac-
terization of giant magnetostrictive materials using
three complex material parameters by particle
swarm optimization [ J]. Micromachines, 2021, 12
(11). 1416.

HUANG W M, WU X Q, GUO P P. Variable co-
efficient magnetic energy losses calculation model
for giant magnetostrictive materials [ J]. IEEE
Transactions on Magnetics, 2021, 57(2): 6300505.
BERBYUK V, SODHANI J. Towards modelling
and design of magnetostrictive electric generators
[J]. Computers & Structures, 2008, 86(3/4/5):
307—313.

ZANG J, LIU P P, ZHANG Y W, et al. The per-
formance of nonlinear vibration control via NiTi-
NOL-Steel wire ropes [J]. Communications in Non-
linear Science and Numerical Simulations, 2023,

118: 107058.



