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摘要 针对存在外界未知干扰、参数不确定问题的刚-液-柔多体耦合航天器姿态控制进行了研究.将液体

燃料的晃动等效为球摆模型,挠性附件假设为欧拉-伯努利梁,建立了多体耦合航天器动力学方程.首先,设

计了积分滑模干扰观测器,使其能够在有限的时间范围内对控制系统的集总扰动实现准确估计;其次,以此干

扰观测器为基础,设计了一种时变滑模控制方法,该控制运用双曲正切函数;最后,结合光滑整形技术,设计出

零振动指令光滑器,从而抑制液体晃动和挠性附件振动.数值仿真结果表明:本文所设计的控制方案具有可

行性和有效性,多模态充液挠性航天器在姿态机动过程中所引起的残余振动可以得到有效抑制.

关键词 刚-液-柔耦合航天器, 姿态机动, 干扰观测器, 时变滑模控制, 命令光滑器
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Abstract In
 

this
 

paper,
 

attitude
 

control
 

of
 

rigid-liquid-flexible
 

multi-body
 

coupling
 

spacecraft
 

with
 

un-
known

 

interference
 

and
 

uncertain
 

parameters
 

is
 

studied.
 

The
 

sloth
 

of
 

liquid
 

fuel
 

is
 

equivalent
 

to
 

the
 

spherical
 

pendulum
 

model,
 

the
 

flexible
 

attachment
 

is
 

assumed
 

to
 

be
 

Euler-Bernoulli
 

beam,
 

and
 

the
 

dy-
namics

 

equation
 

of
 

spacecraft
 

is
 

established
 

by
 

Lagrangian
 

method.
 

Firstly,
 

an
 

integral
 

sliding
 

mode
 

dis-
turbance

 

observer
 

was
 

designed
 

for
 

a
 

finite
 

time,
 

enabling
 

the
 

designed
 

model
 

to
 

estimate
 

the
 

lumped
 

disturbances
 

of
 

the
 

control
 

system
 

within
 

a
 

specified
 

time
 

range.
 

Then,
 

based
 

on
 

disturbance
 

observer,
 

a
 

time-varying
 

sliding
 

mode
 

control
 

method
 

is
 

designed,
 

which
 

uses
 

hyperbolic
 

tangent
 

function.
 

Finally,
 

a
 

zero-vibration
 

command
 

smoothing
 

device
 

is
 

designed
 

to
 

suppress
 

liquid
 

sloshing
 

and
 

vibration
 

of
 

flexi-
ble

 

accessories.
 

The
 

numerical
 

simulation
 

results
 

indicate
 

that
 

the
 

control
 

scheme
 

designed
 

in
 

this
 

paper
 

is
 

feasible
 

and
 

effective,
 

the
 

residual
 

vibration
 

caused
 

by
 

the
 

multi-mode
 

flexible
 

spacecraft
 

during
 

atti-
tude

 

maneuver
 

can
 

be
 

effectively
 

suppressed.
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引言
  

现代大型航天器的结构日益复杂,不但携带大

量液体燃料(占到航天器总体质量的40%以上),往
往还会携带多种挠性附件(如太阳帆板,空间机械

臂,柔性可伸展天线等).而一个非线性且耦合的动

力学系统是由航天器的液体燃料,挠性附件和主刚

体所组成的,从而为航天器控制带来了极大的挑战.
要消除燃料晃动所诱发的不稳定效应,就必须

将液体燃料晃动纳入航天器整体控制系统建模方案

中.在建立模型时,各类贮腔内的液体晃动效应常以

等效的力学模型进行阐述.例如:基于光滑粒子流体

力学[1]方法,提出一种流量可控的出口边界处理方

法,可估算出液体晃动对航天器的影响;在变参数的

复合摆等效力学模型[2]的基础上,采用混合坐标法

对一类变质量充液航天器展开动力学建模,从而为

航天工程实践提供一定的理论指导和参考;建立液

体多模态晃动等效力学模型[3],结合输入成型和自

适应滑模控制设计了复合控制策略.其他还有用浮

动坐标法[4]来模拟柔性体的小幅晃动;质心面模型

和运动脉动球模型[5]模拟液体大幅晃动;变参数复

合摆模型[6]用于模拟液体燃料晃动及消耗.
  

随着航天器结构日益复杂化,外部扰动多样

化,且控制精度不断提高,对充液挠性多体航天器

的研究也更加深入.文献[7]提出了一个复合的

3DOF刚性摆模型来等效非线性液体晃动,并通过

三种不同情况模拟验证了模型的有效性,为分析航

天器中液体燃料的大振幅横向晃荡和旋转晃动提

供了新思路.文献[8]研究了含有板类柔性附件的

复杂航天器,在对太阳能帆板的变形进行探究时,

采用Kirchhoff-Love薄板模型,然后,通过 Hamil-
ton变分原理推导了充液储腔的液体晃动控制方

程,并分析了由于柔性附件装配位置的不同,从而

对耦合航天器的系统动力学行为产生了较大的干

扰.文献[9]研究充液挠性航天器大范围运动,基于

凯恩方法建立航天器刚-液-柔耦合系统动力学,

采用脉动球模型等效液体燃料的晃动,并考虑柔性

帆板振动过程中的动力刚化效应,该动力学模型对

航天器动力学分析有重要意义.文献[10]研究了多

体耦合航天器的非线性建模和姿态机动问题,采用

改进的运动脉动球模型等效液体的大幅晃动,建立

刚-液-柔耦合航天器动力学系统.仿真结果表

明,液体晃动会导致航天器姿态机动,从而影响挠

性附件的变形.
  

干扰观测器可以克服环境干扰和参数不确定

性对航天器姿态控制精度带来的影响,在实际工程

中也被广泛应用.文献[11]基于滑模控制(Sliding
 

Mode
 

Control,
 

SMC)理论和自适应积分滑模控制

器(Adaptive
 

Integral
 

Sliding
 

Mode
 

Controller,
 

AISMC)法则,设计出用于挠性航天器的姿态跟踪

控制的滑模干扰观测器(Sliding
 

Mode
 

Disturbance
 

Observer-Adaptive
 

Integral
 

Sliding
 

Mode
 

Control-
ler,

 

SMDO-AISMC),既可以实现对滑模干扰观测

器(Sliding
 

Mode
 

Disturbance
 

Observer,
 

SMDO)
估计和跟踪误差同时收敛,又可以有效抑制由外部

干扰和参数不确定引起的扰动.文献[12]将充液挠

性航天器的惯性不确定性、外部扰动、液体晃动和

柔性附件的耦合归为集总扰动,并设计出模糊干扰

观测器(Fuzzy
 

Disturbance
 

Observer,
 

FDO)来估

计,可以通过调整设计参数减小估计误差.文献

[13]提出了一种固定时间收敛的扰动观测器,但其

收敛时间取决于初始状态,其在实际中很难测得.
文献[14]运用径向基函数神经网络补偿未知干扰,
有效降低了输出饱和的风险.

  

时变滑模面可随系统状态或时间改变而改变,

使系统在任何时刻的状态变量都能够处于滑模上,
从而消除趋近阶段、增强系统对高频抖动的抗冲击

能力和鲁棒性.文献[15]提出了一种对于输入饱和

执行器线性不确定情况下的时变滑模面,对被控对

象无要求.文献[16]将变结构控制方法应用于航天

器的姿态机动,并设计了时变滑模面和切换机制,
有效解决了航天器非线性机动控制问题.文献[17]

将时变滑模控制的指数形式与干扰观测器相结合,
能够有效降低系统稳态误差,极大改善了系统的控

制精确性.文献[18]提出在不了解系统初始状态前

提下的时变滑模面,使得被控系统在接近滑模和到

达滑模后都能加速收敛.
  

零振动光滑整形技术为充液挠性航天器中的
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挠性附件振动抑制提供了新途径.文献[19]对平面

桥式起重机进行试验,证实了该光滑整形技术抑制

挠性附件振动的有效性.文献[20]研究了矩形贮液

箱内的液体晃动,采用了将命令光滑器和输入成型

复合的控制方法,仿真和实验数据显示控制器有良

好的振动抑制效果.文献[21]优化了前人设计的光

滑器,优化后的光滑器既可以更好地抑制液体晃动

又对系统参数变化和工作条件变化不敏感.文献

[22]采用遗传算法优化控制器参数,使系统的平方

误差加权指标(ISE)和违反控制输入约束的加权惩

罚项指标最小,明显提高了系统的鲁棒性.
  

针对刚-液-柔耦合航天器的姿态机动问题,

本文提出了一种复合控制方法.考虑航天器在进行

姿态机动过程中会受到多种干扰力矩的影响,且系

统各参数不能确定,设计了积分滑模干扰观测器,

能在有限时间范围内估计系统的集总扰动.同时结

合零振动光滑整形技术设计了命令光滑器,在保证

系统渐近稳定的同时抑制在姿态机动时产生的液

体晃动以及柔性附件的振动.

1 充液挠性航天器动力学建模

1.1 航天器姿态动力学方程

q
·
0

q
·

􀭠

􀭡
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁􀪁 =

1
2G

T(q0,q)ω (1)

G(q0,q)=[-q,q0I3-q×] (2)
  

其中ω=[ω1 ω2 ω3]T 为航天器的角速度,I3
为单位对角矩阵,[q0 q]T=[q0 q1 q2 q3]T

为姿态四元数,其满足约束条件q20+qTq=1,以便

后文 对 姿 态 控 制 问 题 阐 述 简 便,本 文 仅 考 虑

q0=1,q×为叉乘矩阵,定义为:

q×=

0 -q3 q2
q3 0 -q1
-q2 q1 0

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁

(3)

1.2 充液挠性航天器数学模型
  

航天器的模型如图1所示,Oo-XYZ 为航天器

的本体坐标系,航天器主刚体的质心Oo 为坐标原

点.液体晃动等效为球摆运动,OP 为球摆的悬挂

点,摆长为l,质量为mp,位移矢量为rp.挠性附件

等效为欧拉-伯努利梁,长度为l1,单位密度为

ρA,弯曲刚度为EI.本文只考虑航天器的姿态运

图1 充液挠性航天器示意图和力学模型
Fig.1 Schematic

 

diagram
 

and
 

mechanical
 

model
 

of
 

a
 

liquid
 

filled
 

flexible
 

spacecraft

动且航天器只包含一个液体贮液箱,液体燃料为小

幅晃动.
  

球摆在Oo-XYZ 的位移矢量r1=rt+rp,速

度矢量r·1=r
·
t+ω×rp,文献[12]利用拉格朗日

法,建立球摆动力学方程:

Aη
··
+Cfη

·
+δω· +Kfη+mpD+F(ω)η

·
=0
(4)

式中,A=
mp 0

0 mp

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 ,Cf =

2c1 c2
c2 2c3

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 ,

δ=
-mprz 0 mprx

mpry -mprx 0
􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 ,η=

y
z
􀭠
􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 ,

Kf =

mpg
l 0

0
mpg
l

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁

,F(ω)=
0 -2mpω1

2mpω1 0
􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 ,

D=
rxω1ω2-ry(ω2

1+ω2
2)+rzω2ω3

rxω1ω3-rz(ω2
1+ω2

2)+ryω2ω3

􀭠

􀭡

􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁􀪁 .

   

挠性附件的弹性位移u,采用模态分析法u=

∑
3

i=1
φi(y)εi(t),φi(y)为挠性附件的三阶主振动函

数,令ε(t)=U×n(t).文献[8]建立挠性附件的动

力学方程为:

Bsω
·
+n··(t)+Csn

·
(t)+Ksn(t)=0 (5)

式中:

Ks =diag{uiEI∫
l1

0

d2φi(y)
dy2

􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

2

dy}

Cs =diag{2ξiui 2EI∫
l

0

d2φi(y)
dx2

􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

2

dyεi(t)}

Bs=

0 0 b1
0 0 b2
0 0 b3

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁 bi=-uiρA∫

l1

0
φi(y)(r0+y)dy

  ui=
1

ρA∫
l1

0
φ2

i(y)dy
,

 

i=1,2,3
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设航天器的转动惯量为J,主刚体的转动惯量

为Jb,质量为mb.文献[8]得到航天器整体的动力

学方程:

Jω· +ω× (Jω +BT
sn
·
+δTη

·)+BT
sn
··
+

  δTη
··

 

-Td -τ=0 (6)

式中,Jb=J-mbr×
pr×

p ,Td 为未知干扰力矩,τ 为

控制力矩.
  

综上方程(4)~方程(6)为充液挠性多体航天

器动力学方程.

2 复合控制器设计

2.1 有限时间积分滑模干扰观测器的设计
  

为控制方便引入新的状态变量ψ、ζ.省略掉方

程中的高阶小量,由系统动力学方程可得

ω· =J-1[-ω×Jω +T
-
d +τ] (7)

ψ
·
=-(A-1Cfψ+A-1Kfη-A-1CfA-1δω)

(8)

η
·
=ψ -A-1δω (9)

ξ
·
=-(Csξ+Ksn-CsBsω) (10)

n·=ζ-Bsω (11)

其中集总扰动为:

T
-
d =Td -ω× (ΔJω +BT

sn
·
+δη

·)-ΔJω· +

 δT(A-1Cfψ +A-1Kfη-A-1CfA-1δω)+

 BT
s(Csξ+Ksn-CsBsω)

式中:ΔJ=mbr×
pr×

p ,ΔJ 为不确定惯性矩阵.
  

充液挠性航天器的控制系统可以表示为式

(1)、式(7)~式(11).
  

定义如下符号:

sigv(x)=|x1|vsign(x1)+

 |x2|vsign(x2)+…|xn|vsign(xn)

式中:x = [x1,x2,…,xn]T ∈Rn,0<v <1,

sign(·)表示符号函数.
  

引理1[10]:如 果 存 在 0<p<1,则 不 等 式

∑
3

i=1
|xi|1+p≥(∑

3

i=1
|xi|2)1+p

/2 成立.
  

引理2[10]:对于任何实数xi(i=1,2,…,n),

存在0<b<1使不等式(|x1|+|x2|+…+|xn|)b

≤|x1|b+|x2|b+…+|xn|b 成立.
  

引理3[19]:考虑如下系统:

x· =f(x), f(0)=0

其中:x∈Rn,f:U→Rn 为连续函数.
假设存在连续可微函数V:U→Rn 满足下述

条件:V(x)是正定函数;

存在任何实数a1>0,0<a2<1,和a3>0且

为常值时,如果V(x)满足下列任意微分不等式:

V
·
(x)+a1V

a2(x)≤0

V
·
(x)+a3V(x)+a1V

a2(x)≤0
则系统是全局有限时间稳定的.

  

引理4[19]:考虑如下系统:

x·1=x2,x
·
2=x3,…,x

·
n =u

如果控制器设计为:

 u=-k1sign(x1)|x1|
α1 -

k2sign(x2)|x2|
α2-…-knsign(xn)|xn|

αn

则闭环系统是全局有限时间稳定的.其中:αi-1=
(αiαi-1)/(2αi+1-αi),i=1,2,…,n,αn=α,αi+1=

1,α∈(1-ε,1),ε∈(0,1);k1,k2,…,kn 保证sn+

knsn-1+…+k1 是Hurwitz.
  

设计如下干扰观测器:

s0=Jω -v (12)

v·=-ω×Jω +τ(t)+T
-
d(t) (13)

s1i=s
·
0i+∫

t

0
[k1isig

α1i(s0i)+k2isig
α2i(s·0i)]ds

(14)

T-︵
·

di(t)=k1isig
α1i(s0i)+k2isig

α2i(s0i)+
 λ1isigβ(s1i)+λ2is1i+Lisign(s1i) (15)

式中:s0 =[s01 s02 s03]T,Li ≥sup
t≥0

|d
-
·

i|,α2i =

α1i/(1+α1i),0<α1i <1.
k1i,k2i,α1i,α2i,λ1i,λ2i,Li(i=1,2,3)均为正

常数;T-︵d(t)为T
-
d(t)的估计值.

  

注:式(14)中的积分项确保了滑模观测器能够

在有限的时间范围内实现收敛,通过积分的运算,

T-︵d(t)可得知,进而颤振现象可以通过此项来进行

改善.
  

定理1:针对充液挠性航天器姿态控制系统式

(7)~式(11),设计的干扰观测器为式(12)~式

(15),可以在有限的时间范围内估计到集总干扰.
  

证明:由式(12)可以得到

s·0=Jω· -v·=-ω×Jω +τ+T
-
·

d(t)-

 [-ω×Jω +τ+T
-︵
d(t)]=T

~
d(t) (16)

  

将式(14)对时间求导整理可得:
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 s·1i= -λ1isigβ(s1i)-λ2is1i-Lisign(s1i)+T
-
·

d(t)

(17)

  

考虑如下Lyapunov函数:

V1=
1
2s

T
1s1 (18)

  

将V1 对时间求一阶导数得:

V
·
1=sT

1s
·
1

= -∑
3

i=1
s1i[λ1isigβ(s1i)+λ2is1i+Lisign(s1i)-T

-
·

d(t)]

≤-∑
3

i=1

[λ1isigβ+1(s1i)+λ2is21i+Li‖s1i‖-T
-
·

d(t)‖s1i‖]

≤-∑
3

i=1

[λ1isigβ(s1i)+λ2is1i]

≤2(β+1)/2λ1V
(β+1)/2
1 -λ2V1 (19)

式中:λ1 =min{λ11,λ12,λ13},λ2 =min{λ21,λ22,

λ23}.
  

据引理3和式(19)可以推知,在有限的时间范

围内,系统能够到达滑动模态s1,当s1=0时,式
(14)可以写成:

s··0i=-k1isig
α1i(s0i)-k2isig

α2i(s·0i) (20)
  

由引理4可得s0 在有限时间收敛到0,定理1
得证.

2.2 时变线性滑模控制
  

引理5[10]:若函数f(x)在区间[0,∞)上连

续,且其广义积分∫
∞

0
f(t)dt 存在且有界,则可知

lim
t→∞

f(t)=0.
  

假设1:控制力矩有界.
  

选取如下时变滑模面:

s=ω +k(t)q (21)
式中k(t)为时变控制参数,对时间进行求导可得

k
·
(t)=-γk(1-kp)τmaxqT[tanh(s/p2)+
 tanh(kq/p2)]-γkγck(qTq+γd) (22)

式中0<kp <1,τmax 为控制力矩最大值,γk,γc,

γd 为正常数.

p2(t)定义为:

p2(t)=p2
0e

-γp6α
-(1-kp

)τmaxt+

 γpγc∫
t

0
exp[-γp6α

-(1-kp)τmax(t-σ)]×

 k(σ)2[q(σ)Tq(σ)+γd]dσ (23)

式中:p2
0=p2(0),γp 为正常数.由双曲正切函数所

满足的性质,正参数α- 满足如下不等式关系,其中

x,y 为正参数

0≤|x| 1-tanh
x
y  􀭠

􀭡

􀪁􀪁 􀭤
􀭥

􀪁􀪁 ≤α-|y| (24)

d
dt
(p2)=-γp6α

-(1-kp)p2+

  γpγck2(qTq+γd) (25)
 

控制律设计为:

 τ=-kpτmaxq-T
-︵
d -(1-kp)τmaxtanh(s/p2)

(26)

 

考虑如下李雅普诺夫函数条件:

 V2=
1
2ω

TJω+2kpτmax(1-q0)+
1
2γk

k2+
1
γp

p2

(27)
 

对其求时间的导数可得:

V
·

2=ωT(Jω +kpτmaxq)+
1
γk

k
·
+
1
γp

d
dt
(p2)

(28)

 

将式(21)、式(22)、式(25)和式(26)代入式

(28)可得:

 V
·

2=ωT[-ω×Jω+T
~
d-(1-kp)τmaxtanh(s/p2)]+

k
γk
{-γk(1-kp)τmaxqT[tanh(s/p2)+

tanh(kq/p2)]-γkγck(qTq+γd)}+
1
γp

d
dt
(p2)

=sT[T
~
d -(1-kp)τmaxtanh(s/p2)]-

(1-kp)τmaxkqTtanh(s/p2)-
(1-kp)τmaxkqTtanh(kq/p2)-

γkγck(qTq+γd)+
1
γp

d
dt
(p2)

=sT[T
~
d -(1-kp)τmaxtanh(s/p2)]-

kqT[T
~
d +(1-kp)τmaxtanh(kq/p2)]-

6α-(1-kp)p2

由于-1≤tanh(x)≤1,x ∈R

 V
·

2≤∑
3

i=1
si[T

~
di(t)-(1-kp)τmaxtanh(si/p2)]-

∑
3

i=1
kpi[T

~
di(t)+(1-kp)τmaxtanh(kqi/p2)]-

6α-(1-kp)p2 ≤ ‖si‖T
~

di-(1-

kp)τmax∑
3

i=1
|si|tanh(si/p2)+(1-

kp)τmaxtanh(si/p2)(∑
3

i=1
|si|-‖s‖1)-

(1-kp)τmax∑
3

i=1
k|qi|tanh(k|qi|/p2)+
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k(1-kp)τmax[tanh(k|qi|/p2)×∑
3

i=1
|qi|-

tanh(k‖qi‖/p2)]-k‖pi‖T
~
di-6α-(1-kp)p2≤

‖si‖T
~
di-(1-kp)τmax∑

3

i=1
|si|tanh(si/p2)+

(1-kp)τmax(∑
3

i=1
|si|-‖s‖1)-k‖pi‖T

~
di+

k(1-kp)τmax(∑
3

i=1
|qi|-‖q‖1)-6α-(1-kp)p2≤

-‖s‖i[(1-kp)τmax-T
~

di]+(1-

kp)τmax∑
3

i=1

{|si|[1-tanh(si/p2)]}-

‖kqi‖[(1-kp)τmax-T
~

di]+(1-kp)·

τmax∑
3

i=1

{|kqi|[1-tanh(kqi/p2)]}-6α-(1-kp)p2

根据式(24)可以推出如下

(1-kp)τmax∑
3

i=1

{|si|[1-tanh(si/p2)]}

≤3α-(1-kp)τmaxp2 (29)

(1-kp)τmax∑
3

i=1

{|si|[1-tanh(si/p2)]}

≤3α-(1-kp)τmaxp2 (30)
将式(29)、式(30)代入得:

V
·

2≤-(‖s‖1+‖kq‖1)[(1-kp)τmax-T
~
di]≤0
(31)

  

由上式可知,控制系统的状态变量ω,q 均为

有界变量.将式(31)两边从0到∞积分可知

V2(∞)-V2(0)≤-[(1-kp)τmax-

 T
~

di]∫
∞

0
(‖s‖1+‖kq‖1)dt≤0

式中定义V2(∞)=lim
t→∞

V2(t),V2(0)=lim
t→∞

V2(t).根

据引理5可得:

lim
t→∞

ω =lim
t→∞

kq=0 (32)
  

由式(32)可知,lim
t→∞

kq=0,可以看出不能保证

在任何时刻lim
t→∞

q=0.因为时变参数k 是随时间变

化的,如果lim
t→∞

k=0,也可以得到lim
t→∞

kq=0的结果,

所以lim
t→∞

q=0的收敛性是不确定的.为此,为了保证

q快于k收敛于0,需要选择合适的控制器参数γk,

γd,k(0).在选择这些参数时应注意:
(1)这些参数应可调控,使得q 的收敛速度快

于k;
(2)要保证控制器出现可接受的良好控制性能.
上述时变滑模变结构控制器,将传统的滑模控

制器中的符号函数用双曲正切函数取代,从而能够

改善传统滑模的控制输入颤振现象.

2.3 零振动指令光滑设计
  

零振动光滑整形技术作为一种前馈控制,不需

要测量挠性附件振动的状态变量和液体晃动的状

态变量,只需要对系统原始驱动命令与一系列脉冲

进行卷积计算,将这种卷积的运算过程定义为输入

成形技术,这一系列脉冲被称为输入整形器,从而

产生光滑的驱动命令.使用整形器对原始输入指令

做整形处理,从而整形后的指令驱动系统达到抑制

液体的晃动或者挠性附件振动的目的.
  

由系统内液体的晃动方程(4)以及挠性附件的

振动方程(5)可知,系统内液体和挠性体的振动均

为典型的二阶振动系统,其输出为系统角速度导数

的耦合项,所有振动方程的输入均为四元数.因此系

统的四元数可作为指令输入对系统进行前馈控制.
定义前馈控制器为u(τ),同时定义[q-c0 q-Tc]T=

[q-c0 q-c1 q-c2 q-c3]T 作为输入前馈控制器的指令

四元数,[qc0 qT
c]T=[qc0 qc1 qc2 qc3]T为经过

前馈控制器卷积后的输出指令四元数.
 [qc0 qT

c]T=[q(0) qT(0)]T+
{[q-c0 q-Tc]T-[q(0) qT(0)]T}*u(τ)

(33)

  

式中 [q(0) qT(0)]T 为姿态四元数的初始值,*
为卷积运算符号,u(τ)为待设计的前馈控制器的

表达式.
进一步地,定义误差四元数

[qe0 qT
e]T=[qe0 qe1 qe2 qe3]T

qe0

qe1

qe1

qe1

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

=

qc0 qc1 qc2 qc3

-qc1 qc0 qc3 -qc2

-qc2 -qc3 qc0 qc1

-qc3 qc3 -qc1 qc0

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

q0
q1
q2
q3

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

(34)

  

光滑器设计的基础是振动系统的固有频率ωk

和阻尼比ζk.光滑器对原始的驱动命令进行改进,
且不会引发系统振荡的光滑命令.典型的二阶振动

系统对光滑命令u(τ)的响应如下:

f(t)=∫
+∞

τ=0
u(τ)

ωk

1-ζ2
k

e
-ζkωk(t-τ)×

 sin[ωk 1-ζ2
k(t-τ)]dτ (35)

其幅值为
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A(t)=
ωk

1-ζ2
k

e
-ζkωkt×

 [S(ωk,ζk)]2+[C(ωk,ζk)]2 (36)

其中

S(ωk,ζk)=∫
+∞

τ=0
u(τ)eζkωkτ ×sin(ωkτ 1-ζ2

k)dτ

C(ωk,ζk)=∫
+∞

τ=0
u(τ)eζkωkτ ×cos(ωkτ 1-ζ2

k)dτ

  为了消除系统响应的振动,式(36)的振幅应为

零,即平滑后的命令u 不会引起系统的残余振动.
此外,为了增强命令光滑器的鲁棒性,需要增加额

外的约束,即式(36)的幅值对ωk 和ζk 的导数应限

制为零,即满足下列条件:

∫
+∞

τ=0
u(τ)eζkωkτsin(ωkτ 1-ζ2

k)dτ=0 (37)

∫
+∞

τ=0
u(τ)eζkωkτcos(ωkτ 1-ζ2

k)dτ=0 (38)

∫
+∞

τ=0
τu(τ)eζkωkτsin(ωkτ 1-ζ2

k)dτ=0 (39)

∫
+∞

τ=0
τu(τ)eζkωkτcos(ωkτ 1-ζ2

k)dτ=0(40)
  

为了使光滑后的命令与原命令驱动系统处于

同一位置,平滑后的命令在时域内的积分应限制为

1,即

∫
+∞

τ=0
u(τ)dτ=1

  

最后,典型的二阶振动系统的命令光滑器的表

达式为

u(τ)=

τu0e
-ζkωkτ, 0≤τ≤T

(2T-τ)u0e
-ζkωkτ,T ≤τ≤2T

0, τ≥2T

􀮠

􀮢

􀮡

􀪁
􀪁
􀪁􀪁

􀮦

􀮨

􀮧

􀪁
􀪁
􀪁􀪁

(41)

其中 u0=ζ2kω2
k/(1-e

-2πζk/ 1-ζ
2
k)2,T =2π/(ωk

1-ζ2k)是系统的阻尼振荡周期.

3 仿真结果与比较
  

选取航天器的转动惯量为

J=

503 0 0
0 385 -5
0 -5 420

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁 kg/m

2

不确定惯性矩阵为

 ΔJ=diag{0.01sin(0.1t),0.02sin(0.2t),

  0.03sin(0.3t)}
假设航天器的外部干扰力矩为

Td =0.02
3+2sin(0.1t)

2+3sin(0.2t)

1+2cos(0.3t)

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁

􀭤

􀭥
􀪁
􀪁
􀪁
􀪁 (N·m).

液体等效模型相关参数选取:

 mp =10kg,l=0.228m,rx =0.8m,ry =rz=0,

 c1=c2=c3=0.05,g=1.689m·s-2.
挠性附件相关参数为:

E=7×1010N/m2,l1 =3m,r0 =0.65m,I=3×

10-9m2,ρ=2.8×103kg/m3,A=1.125×10-2m2.
各阶模态阻尼系数为:

 ζ1=0.01,
 

ζ2=0.007,
 

ζ3=0.005.
干扰观测器相关参数选取为:

β=0.5,k11=k12=k13=2,k21=k22=k23=1,

α11=α12=α13=0.7,λ11=λ12=λ13=3,

λ21=λ22=λ23=3,L1=L2=L3=100;

时变滑模控制参数设计如下:

α- =0.24,kp =0.4,γc =1,γp =0.02,

γd =0.08,γk =0.005,p2(0)=1.2,k0=2;
零振动指令光滑器参数设计如下:

ωk =0.0996,ζk =0.01
  

为对本文所提出的控制器的有效性和鲁棒性

进行考证,提出了以下两种仿真形式.
情形一:对本文所设计的基于干扰观测器的时

变滑模控制器,结合零振动指令光滑器之后的复合

控制器,进行仿真研究.仿真结果如图2~图7.
仿真分析如下:
  

(1)图2给出了系统集总扰动的估计值和实际

值的响应曲线图,可以看出在有限的时间范围内,

航天器的集总扰动T
-
d 能够被合理地估计,尤其在

对稳态响应区间进行干扰估计时,干扰误差估计精

准,因此,此观测器的观测性能较好.

图2 干扰力矩及其估计值响应
Fig.2 Interference

 

torque
 

and
 

its
 

estimated
 

value
 

response
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(2)图3和图4分别给出了系统角速度和姿态

四元数响应曲线图,可以看出角速度和姿态四元数

在50秒左右收敛到平衡位置;加入零振动指令光

滑器后的角速度及姿态四元数超调量略有减小.
  

(3)图5给出了控制力矩响应曲线对比图,可
以看出控制力矩在50秒左右收敛到平衡位置,加
入零振动指令光滑器后控制力矩的稳态区间误差

精度更小,控制系统的稳定性更好.

图3 角速度响应

Fig.3 Angular
 

velocity
 

response

图4 姿态四元数响应

Fig.4 Attitude
 

quaternion
 

response

图5 控制力矩响应

Fig.5 Control
 

torque
 

response

(4)图6和图7给出液体晃动的位移和挠性附

件振动的模态坐标响应曲线对比图,可以看出加入

零振动指令光滑器后液体晃动以及挠性附件的振

动响应大幅度减小.证明了复合控制器对系统振动

抑制的有效性.

图6 液体晃动位移响应

Fig.6 Liquid
 

sloshing
 

displacement
 

response

图7 挠性附件的三阶模态坐标响应

Fig.7 Third
 

order
 

modal
 

coordinate
 

response
 

of
 

flexible
 

attachments
    

情形二:对文献[15]所提出的时变滑模控制器

进行仿真对比探究,为了更加方便对控制效果进行

比较,将文献[15]设计的控制器在充液挠性控制式

(1)、式(17)~式((21)的环境下进行数值仿真分

析,如图8~图10.
通过观察上述仿真结果图,可知如下结论:
  

(1)对比图3和图8中的角速度响应曲线图,

图3的角速度收敛到平衡位置需要50秒左右,图8
中的角速度收敛到平衡位置则约需要65秒左右,

而且图3的稳态区间的误差精度更小,拥有更高的

控制精度.
(2)对比图4和图9中的姿态四元数响应曲线

图,图4的姿态四元数收敛到平衡位置需要50秒

左右,图9中的姿态四元数收敛到平衡位置则需要
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图8 基于文献[15]控制器的角速度响应

Fig.8 Angular
 

velocity
 

response
 

of
 

controller
 

based
 

on
 

reference
 [15]

图9 基于文献[15]控制器的姿态四元数响应

Fig.9 Attitude
 

quaternion
 

response
 

of
 

controller
 

based
 

on
 

reference
 [15]

图10 基于文献[15]控制器的控制力矩响应

Fig.10 Control
 

torque
 

response
 

of
 

controller
 

based
 

on
 

reference
 [15]

100秒左右,且图4在稳态区间的控制精度更高,

两种控制相比之下,本文所设计的复合控制器拥有

较好的瞬态响应.
  

(3)对比图5和图10中的控制力矩响应曲线

图,图5的控制力矩收敛到平衡位置需要50秒左

右,图10中的控制力矩收敛到平衡位置需要100
秒左右,而且存在连续抖动的现象,对控制器产生

不良影响.两种控制相比之下,本文所设计的复合

控制器拥有较好的稳定性.

4 结论
  

本文研究充液挠性航天器姿态机动与振动抑

制问题,将液体晃动等效为球摆模型,挠性附件等

效为欧拉伯努利梁,采用拉格朗日方法建立了充液

挠性航天器的姿态动力学模型.考虑系统存在外部

未知干扰、参数不确定的情形,设计了航天器姿态

机动控制器.所设计的控制系统有如下优势:
  

(1)设计的时变滑模控制器,使系统的状态变

量也可以在有限时间内渐近稳定,且通过 Lya-

punov函数证明了系统的稳定性.
  

(2)设计的积分滑模观测器,可以在有限时间

内准确估计系统所受到的集总扰动.
  

(3)针对液体晃动和挠性附件振动,设计的命

令光滑器,实现了姿态机动稳定的同时抑制了因姿

态机动引起的液体晃动以及挠性附件的振动响应.
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分段光滑机械振动系统亚谐振动的复杂分岔*

张锦涛1† 吕小红2 金花2 刘芳璇1
 

(1.
 

西安铁路职业技术学院
 

牵引动力学院,西安 710026)
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兰州交通大学
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摘要 以一类单自由度分段光滑机械振动系统为研究对象.数值计算两参数平面上亚谐振动的模式及分布

区域,利用延拓打靶法对亚谐包含域内亚谐振动的分岔特征、稳定性及转迁规律进行了详细研究.结果表

明:弹性碰撞振动系统中擦边分岔是连续可逆的.在亚谐包含域内,倍化型擦边分岔普遍存在,鞍结型擦边

分岔和亚临界周期倍化分岔使系统响应发生跳跃和迟滞.高频亚谐包含域内多吸引子共存,混沌吸引子发

生边界激变而突然消失.

关键词 分段光滑, 周期解, 打靶法, Floquet乘子, 分岔

中图分类号:O322;TH113.1 文献标志码:A
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Sub-harmonic
 

Vibrations
 

for
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Vibration
 

System*

Zhang
 

Jintao1† Lv
 

Xiaohong2 Jin
 

Hua2 Liu
 

Fangxuan1

(1.
 

School
 

of
 

Traction
 

Power,
 

Xi􀆶an
 

Railway
 

Vocational
 

&
 

Technical
 

Institute,
 

Xi􀆶an 710026,
 

China)
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University,
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China)

Abstract A
 

class
 

of
 

single-degree-of-freedom
 

piecewise
 

smooth
 

mechanical
 

vibration
 

systems
 

was
 

stud-
ied.

 

The
 

modes
 

and
 

distribution
 

regions
 

of
 

sub-harmonic
 

vibrations
 

in
 

the
 

two-parameter
 

plane
 

are
 

nu-
merically

 

calculated.
 

The
 

bifurcation
 

characteristics,
 

stability
 

and
 

transmigration
 

laws
 

of
 

sub-harmonic
 

vibrations
 

in
 

the
 

sub-harmonic
 

inclusion
 

regions
 

are
 

investigated
 

in
 

detail
 

by
 

using
 

the
 

continuation
 

shooting
 

method.
 

The
 

results
 

show
 

that
 

the
 

grazing
 

bifurcation
 

is
 

continuous
 

in
 

the
 

elastic
 

impact
 

sys-
tem.

 

In
 

the
 

sub-harmonic
 

inclusion
 

regions,
 

PD-type
 

grazing
 

bifurcation
 

are
 

prevalent,
 

and
 

SN-type
 

grazing
 

bifurcation
 

and
 

subcritical
 

period-doubling
 

bifurcation
 

cause
 

jumps
 

and
 

hysteresis
 

phenomenon
 

of
 

system
 

response.
 

Multiple
 

attractors
 

coexist
 

in
 

the
 

high-frequency
 

sub-harmonic
 

inclusion
 

regions,
 

and
 

the
 

chaotic
 

attractor
 

ends
 

up
 

at
 

the
 

boundary
 

crisis.

Key
 

words piecewise
 

smooth, periodic
 

motion, shooting
 

method, Floquet
 

multipliers, bifurca-
tion

引言
  

机械系统工作时零部件之间由于间隙的存在

不可避免地会产生冲击,这种冲击会缩短机器使用

寿命,降低机器性能.近年来,机械振动系统中丰富

的动力学行为,引起了国内外学者的广泛关注.
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考虑弹性约束的碰撞系统是机械系统简化模

型之一.Li[1]建立了一种微振动成型机简化模型,

研究系统两参数平面上周期运动分布的分布特征.
Luo[2]研究了具有对称弹性约束的两自由度碰撞

系统,并设计了一种用于分析对称约束碰撞系统的

电子电路.李冠强等[3]研究了双边碰撞Duffing振

子的对称性和尖点分岔等.李双宝等[4]分析了非光

滑系统全局动力学 Melnikov方法的研究进展.吕
小红[5]研究了碰撞-渐进振动系统的亚谐振动与

分岔.碰撞系统由于约束的存在,很多学者应用数

值和解析的方法对系统周期运动的稳定性与分岔

进行了大量研究.陆启韶等[6]提出了非光滑动力系

统局部映射的方法,应用半解析法分析周期运动的

稳定性和分岔.徐慧东[7]对分段光滑系统周期解的

稳定性及擦边分岔进行了详细的研究和推导.还有

学者对分段光滑振动系统周期解提出了一种延拓

算法,并给出了相应的计算实例[8,9].
碰撞系统从无冲击到冲击状态的过渡会引起

擦边现象,由擦边引起的动力学行为和分岔一直是

这一领域的研究重点.Yue[10]和 Kundu[11]分别研

究了四种可能的软碰撞系统的规范形映射在擦边

轨道邻域内的特征.Humphries[12]用不连续几何方

法研究了碰撞振子的擦边分岔机理及擦边分岔附

近的鞍结分岔.Jiang[13]运用延拓追踪法研究了单

自由度单侧弹性约束和刚性约束两种冲击振动模

型的擦边分岔及其附近的光滑分岔.
  

碰振系统在部分参数域内存在大量亚谐振动,

表现出更为复杂的动力学特性,已有的研究报道对

其分岔行为进行了大量研究,但是对分岔引起的失

稳和转迁特征没有完全揭示.本文以分段光滑机械

振动系统为研究对象,对系统两参数平面上亚谐振

动的模式及分布区域进行计算.应用延拓打靶法追

踪系统稳定与不稳定亚谐振动的分岔与转迁,详细

分析了擦边邻域内的复杂分岔和高频亚谐包含域

内的多吸引子共存及不连续分岔.

1 力学模型及运动微分方程
  

考虑图1所示的分段光滑机械振动系统的力

学模型.冲击振子的质量为 M,被刚度为 K1 的线

性弹簧和阻尼系数为C 的粘性阻尼器连接于固定

支承,并且质块M 受到一简谐激励Psin(ΩT)的作

用.用刚度为 K2 的线性弹簧表示弹性约束,质块

与右侧弹性约束的间隙为B.X 表示质块M 的位

移.引入无量纲参数:x=K1X/P,b=K1B/P,令

μk = K2/(K1 + K2),ξ =C/(2 K1M ),t =

T K1/M ,ω=Ω M/K1 .则系统的无量纲运动

微分方程为:

x··+2ξx
·
+x=sin(ωt) x≤b

x··+2ξx
·
+x+

uk

1-uk
(x-b)=sin(ωt) x>b

􀮠

􀮢
􀮡

􀪁􀪁
􀪁􀪁

(1)

图1 力学模型

Fig.1 Mechanical
 

model
  

当x≤b时,设解流形ϕ1(t)在t0 时刻初值为

z0=(x0,x
·
0)T 则

ϕ1(t)=

e
-ξ(t-t0){a1cos[γ1(t-t0)]+b1sin[γ1(t-

t0)]}+A1sin(ωt)+B1cos(ωt)

e
-ξ(t-t0){(γ1b1-ξa1)cos[γ1(t-t0)]-(γ1a1+

ξb1)sin[γ1(t-t0)]}+A1ωcos(ωt)-B1ωsin(ωt)

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(2)
  

当x>b时,设解流形ϕ2(t)在t1 时刻初值为

z1=(x1,x
·
1)T 点出发,则

ϕ2(t)=

e
-ξ(t-t1){a2cos[γ2(t-t1)]+b2sin[γ2(t-

t1)]}+A2sin(ωt)+B2cos(ωt)+kb

e
-ξ(t-t1){(γ2b2-ξa2)cos[γ2(t-t1)]-(γ2a2+

ξb2)sin[γ2(t-t1)]}+A2ωcos(ωt)-B2ωsin(ωt)

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁􀪁

(3)

式(2)和式(3)中,γ1= 1-ξ2,γ2= 1/(1-μk)-ξ2,

A1、B1 及A2、B2 为振幅常数.a1、b1 及a2、b2 是

与初始条件相关的积分常数.
a1=x0-A1cos(ωt0)-B1sin(ωt0
b1=[x

·
0+ξa1+A1ωsin(ωt0)-

 B1ωcos(ωt0)]/γ1

a2=x1-A2cos(ωt1)-B2sin(ωt1)-μk

b2=[x
·
1+ξa2+A2ωsin(ωt1)-

 B2ωcos(ωt1)]/γ2 (4)

2 系统的Poincaré映射
  

令z=(x,x
·)T ∈R2,定义边界函数:

03
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h(z)=x-b (5)
  

由于弹性约束的存在,质块 M 存在两种工作

状态,即与弹性约束接触或分离.因此可将相空间

划分为G1={(z,t)∶h(z)<0}和G2={(z,t)∶
h(z)>0}两部分.这两种工作状态在非光滑分界

面Σ1 和Σ2 处进行切换.可定义为:

∑1={(z,t)∶h(z)=0,x
·
>0}

∑2={(z,t)∶h(z)=0,x
·
<0} (6)

图2 1/1运动轨线

Fig.2 Trajectory
 

of
 

1/1
 

periodic
 

motion
  

定义两个局部映射P1∶Σ1→Σ2和P2∶Σ2→
Σ1.在非光滑分界面上质块M 运动状态切换,但区

域G1 和G2 的向量场完全相等,因此其跳跃矩阵

为单位阵[7].用p/n 区分周期运动类型,其中n 表

示力周期数,p 表示质块M 与右侧约束接触次数.
设零时刻1/1运动的解流形从Σ1 出发,分别经过

时间t1 和t2 穿越 G2 和 G1 区域返回 Σ1,则其

Poincaré映射可复合为P=P2·P1.复合映射P
对应的Jacobi矩阵DP=DP2×DP1,而

DP1=
∂ϕ1(t)
∂z0

|t=t1
,

 

DP2=
∂ϕ2(t)
∂z1

|t=t1+t2

(7)

  

在利用打靶法[3,8]求得系统周期解的同时,可

求得系统雅可比矩阵的特征值,应用Floquet理论

可以判断周期运动的稳定性,结合延续算法可以研

究系统分岔演化过程.

3 擦边邻域内的复杂分岔
  

为了研究系统亚谐振动的分岔特征,本文应用

基于Poincaré映射的延拓打靶法[8,9]及Floquet理

论求解系统的共存周期解与稳定性.通过仿真计算

双参数(ω,
 

b)平面系统的分岔图以确定亚谐振动

的分布区域,进而分析系统亚谐振动的分岔与转

迁.选取基本参数μk=0.9,ξ=0.06数值计算系统

的双参数分岔图,如图3所示.图中用不同颜色表示

不同类型的p/n周期振动,未标注的黑色区域表示长

周期或混沌运动.图中,在p/1和(p+1)/1运动的参

数域分界处存在很多(2p+1)/2和2p/2类亚谐周

期运动的小区域,为方便描述,称之为亚谐包含域.
下面以图3所示的亚谐包含域为研究对象,进行单

参数延拓分岔分析.

图3 双参数分岔图

Fig.3 Two-parameter
 

bifurcation
 

diagram
  

取间隙b=0.36,延拓计算之前,首先在系统

的状态空间选择一个考察区域Ω=(x,x·)=(-2
≤x≤1,-0.8≤x·≤0.8),然后将状态平面Ω 划分

为100×100=10
 

000个小网格.以每个小网格的

中心点为初始值应用打靶法计算系统的周期解,则
共有10

 

000个初始值需要考察.当ω=0.345时,

求得系统有2个不稳定的周期解,分别以每个周期

解为初值进行延拓计算,结果如图4(a)所示.图中

用品红色“◇”表示倍化分岔点(PD).蓝色“·”表
示擦边分岔点(GR),红色“·”表示鞍结分岔点

(SN),实线表示稳定周期解,虚线表示不稳定的周

期解,用Up/n 标注不稳定的p/n 运动.图4(b)为
数值计算的单参数分岔图,图4(c)~(e)为图4(a)

的局部放大.由图可知,该亚谐包含域内存在两种

不稳定 的 基 本 周 期 振 动,分 别 是 U3/1运 动 和

U2/1运动,两者通过擦边分岔相互转迁,通过倍化

分岔改变稳定性.在擦边分岔邻域内主要存在倍化

分岔和鞍结分岔的不同组合,部分参数下还存在混

沌运动.
由图4(a)可见,该亚谐包含域的左边界为3/1

运动的周期倍化分岔曲线.随ω 增大,3/1运动通

过倍化型擦边分岔(PD1-GR1)转迁为7/2运动,
两分岔点间的间隔Δω=0.001

 

525
 

49.即当ω 增

13



动 力 学 与 控 制 学 报 2024年第22卷

加至ω=0.336
 

598
 

87(PD1)时,3/1运动通过倍化分

岔转迁为6/2运动,同时产生不稳定的U3/1运动,

对应的Floquet乘子为(-1.000
 

01,-0.106
 

50).紧
接着,6/2运动在ω=

 

0.338
 

124
 

36(GR1)时发生

擦边分岔转迁为稳定的7/2运动.结合图4(a)、图

4(b)可知,稳定的7/2运动经倍周期序列进入混

沌,又经倍周期序列退出混沌转迁为7/2运动.在

此分岔过程中,7/2运动的两个倍化分岔点PD2 和

PD3 之间,不稳定的 U7/2运动和 U3/1运动及倍

周期序列运动或混沌运动共存.在ω=0.345时,

系统中混沌运动与不稳定的 U3/1运动及不稳定

的U7/2运动共存,系统的相图和Poincaré映射图

如图5(a)~(c)所示.进一步增大ω,7/2运动经连

续的擦边分岔转迁为5/2运动.

图4 b=0.36时系统随激励频率ω 变化的分岔图及其局部放大

Fig.4 Bifurcation
 

diagram
 

and
 

local
 

amplification
 

of
 

the
 

system
 

with
 

excitation
 

frequency
 

ω
 

when
 

b=0.36

  将图4(a)中ω∈[0.403,0.408]局部放大,如图

4(c)所示.该亚谐包含域的右边界形成迟滞域,多种

周期运动共存.当ω 减小至ω=0.404
 

519
 

93(SN1)

时,对应的Floquet乘子为(0.155
 

01,
 

0.999
 

99),

3/1运动发生鞍结分岔跳跃到混沌运动.在ω=0.

406
 

524
 

21(PD4)时,减小ω,3/1运动经周期倍化分

岔转迁为6/2运动.进一步减小ω,6/2运动经倍化

型擦边分岔(PD5-GR4)转迁为 U5/2运动.PD5 和

GR4 间隔Δω=0.000
 

016
 

3,不同于倍化型擦边分岔

PD1-GR1,这里的GR4 为不稳定周期运动的擦边分

岔.当ω=0.406
 

158
 

25(PD5)时,6/2运动经倍化分

岔失稳,不稳定的U6/2在ω=0.406
 

141
 

95(GR4)

通过擦边分岔转迁为U5/2运动,随后U5/2运动在

PD6 恢复稳定性.在PD5 和PD6 之间,不稳定的

U3/1运动稳定性保持不变,分别与不稳定的U5/2

运动,U6/2运动及稳定的倍周期序列和混沌运动共

存.当ω=0.406
 

524
 

21(PD4)时,增大ω,不稳定的

U3/1运动经倍化分岔恢复稳定.随后3/1运动经鞍

结型擦边分岔(SN2-GR3)
 

而消失,SN2 和GR3 两分

岔点间隔Δω=0.000
 

163
 

94,即在ω=0.407
 

474
 

89
(GR3)时3/1运动经擦边分岔转迁为2/1运动,而

2/1运动在ω=0.407
 

638
 

83(SN2)时经鞍结分岔而

失稳,产生向ω减小方向弯曲的U2/1运动.减小ω,

失稳后的U2/1运动在ω=
 

0.407
 

620
 

11(GR2)
 

通

过擦边分岔转迁为U3/1运动,SN2 和GR2 两分岔

点间隔Δω=0.000
 

018
 

72.可见,在鞍结分岔点SN2
附近同时存在一个稳定周期运动的擦边分岔点GR3
和一个不稳定周期运动的擦边分岔点GR2.进一步

减小ω,不稳定的U3/1运动在SN1 处恢复稳定.在

SN1 和SN2 之间形成的迟滞域内,多种类型的周期

23
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运动共存.在ω=0.405时,系统中有五种类型的运

动共存,包括一个稳定的周期运动3/1,三个不稳定

的周期运动(两个U3/1运动和U5/2运动)和混沌

运动,其共存的相图和Poincaré映射如图5(d)~(h)

所示.图6(a)~(c)为b=0.36时系统共存周期解随

激励频率ω变化的吸引域,倍周期序列的吸引域用

黄色表示,绿色区域为红色3/1运动的吸引域.由图

可见,随着ω减小,蓝色3/1运动发生周期倍化分岔

之后,吸引域的拓扑结构未发生变化,只是面积有所

增大.

图5 相图和Poincaré映射

Fig.5 Trajectories
 

and
 

Poincaré
 

maps

图6 b=0.36时随激励频率ω 变化的吸引域

Fig.6 Basins
 

of
 

attraction
 

with
 

excitation
 

frequency
 

ω
 

when
 

b=0.36

  局部放大图4(a)中ω∈[0.398,
 

0.3995],如
图4(d)所 示.由 图 可 见,随 着 ω 增 大,在 ω=

0.398
 

454
 

92(GR8)时1/1运动发生擦边分岔转迁

为2/1运动.随后,2/1运动通过倍化型擦边分岔

(PD7-GR7)转迁为3/2运动.在ω=0.398
 

545
 

60
(PD7)

 

时2/1发生倍化分岔转迁为4/2运动,同时

产生不稳定的 U2/1运动,分岔点对应的Floquet
乘子(-0.999

 

99,
 

-0.150
 

91).在倍化分岔点附

近,ω=0.398
 

566
 

01(GR7)时,4/2运动发生擦边

分岔转迁为3/2运动.进一步增大ω,3/2运动在ω
=0.398

 

877
 

52(GR6)又通过擦边分岔转迁回4/2

运动,紧接着又在ω=0.399
 

041
 

61(GR5)由4/2
运动擦边转迁为5/2运动.结合图4(a)可知,在此

分岔过程中不稳定的 U2/1运动稳定性不变,从

PD7 之后分别与其他稳定周期运动共存.直至ω=
0.400

 

038
 

06时,不稳定的 U2/1运动经擦边分岔

转迁为不稳定的U3/1运动.
当ω<0.398

 

454
 

92(GR8)时,如图4(a)所示,

随着ω 的 减 小,1/1运 动 在 ω=0.386
 

775
 

08
(GR9)发生擦边分岔转迁为2/1运动.进一步减小

ω,如图4(e)所示,2/1运动在ω=0.372
 

263
 

82
(GR10)经过擦边分岔转迁为3/1运动.减小ω 至ω

33
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=0.372
 

183
 

10(PD8)时,对应的Floquet乘子为

(-0.131
 

88,-0.999
 

99),3/1运动经倍化分岔转

迁为6/2运动,
 

同时产生不稳定的U3/1运动.当ω

=
 

0.372
 

173
 

58(GR11)时,6/2运动经擦边分岔转迁

为5/2运动.继续减小ω,当ω=0.372
 

153
 

86
 

(SN3)
 

时,对应的Floquet乘子为(0.017
 

39,0.999
 

97),
 

5/2
运动经鞍结分岔失稳,且产生了沿ω 增大方向弯曲

的U5/2运动,直至ω=0.372
 

911
 

30(SN4)时,U5/2
恢复稳定.在倍化分岔点PD8 产生了不稳定的U3/1
运动,且倍化分岔产生的稳定周期运动存在极短的

区间(SN3 和PD8 间隔Δω=0.000
 

029
 

24)后跳跃到

共存的5/2运动,因此,该倍化分岔是亚临界周期倍

化分岔(SN3-GR11 -PD8).其本质是在倍化分岔点的

极小邻域内发生鞍结分岔(SN3),使系统响应发生

跳跃和迟滞.由于亚临界周期倍化分岔的存在,不
稳定的U5/2连接上下两个共存的周期解分支,形
成一个迟滞域.在迟滞域内稳定的5/2运动及不稳

定的U5/2运动保持稳定性不变,分别和下解支的

2/1运动、3/1运动、6/2运动及5/2运动共存.在ω
=0.3725时2/1运动和5/2运动的吸引域如图6
(d)所示,2/1运动的吸引域由中心向外辐射,呈丝

带状分布,对初值稍加扰动,系统可能跃迁到5/2
运动,而5/2运动的吸引域面积大,分布集中,显然

此时系统中5/2运动的稳定性强于2/1运动.
  

综上所述,在擦边分岔的邻域内发现主要存在

倍化分岔和鞍结分岔,形成了倍化型擦边分岔

(PD-GR)和鞍结型擦边分岔(SN-GR),还存在一

种复杂的亚临界周期倍化分岔(SN-GR-PD),其实

质为在周期倍化分岔的极小邻域内出现鞍结分岔

或鞍结型擦边分岔.擦边分岔既可以是稳定周期运

动的擦边也可以是不稳定周期运动的擦边.

4 高频亚谐包含域内的不连续分岔
  

高频小间隙参数域内,0/1运动和1/1运动之

间的亚谐包含域内存在大量共存吸引子,使得亚谐

振动的转迁变得更为复杂.直接数值积分和延拓打

靶法结合,对共存亚谐振动的转迁进行详细分析.
  

固定间隙b=0.3,通过增加和减小参数直接

数值积分计算系统分岔图,运用延拓打靶法,对亚

谐包含域内共存的周期一运动、周期二运动和周期

三运动进行延拓追踪,结果如图7(a)所示,图7
(b)和图7(c)为图7(a)的局部放大.图中BC表示

混沌的边界激变,其余分岔点和符号标注与图4
(a)一致.

  

通过胞映射法和延拓打靶法在SN1 和SN2 之

间,发现稳定和不稳定的周期三运动与1/1运动共

存,如图7(a)、图7(b)所示.增加ω,绿色的3/3运动

在ω=1.951
 

157
 

72(GR1)处经擦边分岔转迁为2/3
运动,共存周期运动的相图和Poincaré映射如图7
(d)、图7(e)所示.而2/3运动在ω=1.968

 

446
 

91
[SN2,Floquet乘子为(0.316

 

91,
 

0.999
 

98)]和不

稳定的U2/3运动重合后经鞍结分岔消失.当ω 减

小时,3/3运动在ω=1.896
 

332
 

98
 

[SN1,
 

Floquet
乘子为(0.303

 

42,
 

0.999
 

97)]处和不稳定的U3/3
运动相重合,经鞍结分岔消失.由图7(b)中局部放

大可知,在ω=1.911
 

794
 

90(SN3)和ω=1.912
 

185
 

41(SN4)之间,一个非常狭小的参数区间(Δω
=0.000

 

390
 

51)内存在稳定的周期三运动,其分岔

过程和绿色的3/3运动相似.当ω 增加时,2/3运

动发生了鞍结型擦边分岔(GR2-SN4)转迁为不稳

定的U3/3运动.当ω 减小时,2/3运动在SN3 经

鞍结分岔转迁为不稳定的 U2/3运动.不稳定的

U3/3连接SN1 和SN4,不稳定的 U2/3
 

连接SN2
和SN3,因此在SN1 和SN2 之间形成多种类型周

期运动共存.系统共存吸引子的吸引域如图8(a)

~(c)所示,其中吸引子的颜色与图7(a)一致.品红

色区域为黑色2/3运动的吸引域,蓝色区域为绿色

3/3运动的吸引域,黄色区域为1/1运动的吸引

域.由图可见,1/1运动和3/3运动的吸引域相互

嵌套,而存在区间很小的黑色2/3运动的吸引域缠

绕在3/3运动吸引域的边界处.随ω 增加,3/3运

动经擦边分岔(GR1)转迁为2/3运动,分岔前后的

吸引域如图8(b)、图8(c)所示.由图可见,1/1运

动吸引域的分布变得相对集中,而2/3擦边前后吸

引域的拓扑结构未发生突变,其吸引子与位于吸引

域边界上的U2/3吸引子逐渐靠近.
  

结合图7(a)和图7(c)可见,0/1运动在ω=2.
079

 

418
 

23(GR4)通过擦边分岔转迁为1/1运动.
进一步减小ω,1/1运动发生了亚临界周期倍化分

岔(SN5-GR3-PD2)跳跃到2/2运动.其本质为1/1
运动在ω=2.078

 

591
 

09(PD2)通过倍化分岔[Flo-

quet乘子为(-0.695
 

82,
 

-0.999
 

99)]产生2/2
运动和不稳定的 U1/1运动.U1/1运动在ω=
2.024

 

864
 

82
 

(PD1)经倍化分岔恢复稳定.而2/2
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运动在ω=2.078
 

482
 

15(GR3)经擦边分岔转迁为

1/2运动.随后1/2运动又在ω=2.078
 

273
 

20
(SN5)经鞍结分岔[Floquet乘 子 为(0.484

 

53,
 

0.999
 

98)]失稳,产生向ω 增大方向弯曲的 U1/2
运动,直至ω=2.845

 

888
 

40[SN6,Floquet乘子为

(0.589
 

14,
 

0.999
 

98)]再次恢复稳定.此时减小

ω,1/2运动在ω=2.356
 

642
 

79(PD3),Floquet乘

子为(-0.999
 

99,
 

-0.527
 

42)经倍化分岔转迁为

2/4运动.在ω=2.290
 

859
 

64(GR5),2/4运动擦边

转迁为3/4运动,其相图和Poincaré映射如图7(f)

所示.进一步减小ω,周期运动经倍周期分岔序列进

入混沌,在此分岔过程中,0/1运动的稳定性保持不

变与分岔序列共存,ω=2.2时系统共存的相图和

Poincaré映射如图7(g)所示.继续减小ω,混沌运动

在一段参数区间内突然消失,又突然出现,最后经逆

倍周期分岔退出混沌最终转迁为1/1运动.

图7 b=0.3时系统的响应,(a)~(c)分岔图及其局部放大,(d)~(g)相图和Poincaré映射

Fig.7 Response
 

of
 

the
 

system
 

when
 

=0.3,
 

(a)~(c)bifurcation
 

diagram
 

and
 

local
 

amplification,
 

(d)~(g)
 

trajectories
 

and
 

Poincaré
 

maps

图8 随激励频率ω 变化的吸引域

Fig.8 Basins
 

of
 

attraction
 

with
 

excitation
 

frequency
 

ω
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  在SN5 和SN6 之间多种类型的吸引子共存,

计算0/1运动和倍周期分岔序列的吸引域,如图8
(d)~(h)所示,图中稳定吸引子的颜色与图7(a)

一致,不稳定 U1/2吸引子用浅蓝色圆点标记.浅
绿色区域为倍周期序列吸引子的吸引域,品红色区

域为0/1运动的吸引域.由图可见,随着ω 减小,

0/1运动的吸引域分布逐渐分散,由中心向外辐射

呈丝带状分布.当1/2运动经倍化分岔转迁为2/4
运动后,吸引域形态未发生明显变化.结合图8(d)

和图8(e)
 

可知,继续减小ω,混沌吸引子与吸引域

分形边界碰撞,混沌运动发生边界激变之后突然消

失,因此在图7(a)中可观察到混沌运动在特定区

间消失.

5 结论
  

本文考虑了一种单自由度分段光滑机械振动

系统,应用延拓打靶法追踪系统共存周期解,对系

统亚谐振动的复杂分岔及转迁进一步研究,得到了

以下重要结论:
  

弹性碰撞振动系统中擦边分岔是连续可逆的,

但在擦边分岔的邻域内出现倍化分岔和鞍结分岔

的不同组合会导致系统响应发生巨大差异.
  

亚谐包含域内倍化型擦边分岔普遍存在,且倍

化分岔和擦边分岔不会改变吸引域的拓扑结构.鞍
结型擦边分岔使系统响应产生迟滞和跳跃.当不稳

定周期运动分支连接两个不同模式的稳定周期运

动分支时,必然存在不稳定周期运动的擦边分岔.
混沌吸引子与吸引域分形边界碰撞产生边界激变,

导致混沌运动突然消失.
  

当倍化分岔邻域内出现鞍结型擦边分岔或鞍

结分岔时,该倍化分岔是亚临界周期倍化分岔,使
得系统倍化响应发生跳跃.
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