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Abstract In this paper, attitude control of rigid-liquid-flexible multi-body coupling spacecraft with un-
known interference and uncertain parameters is studied. The sloth of liquid fuel is equivalent to the
spherical pendulum model, the flexible attachment is assumed to be Euler-Bernoulli beam, and the dy-
namics equation of spacecraft is established by Lagrangian method. Firstly, an integral sliding mode dis-
turbance observer was designed for a finite time, enabling the designed model to estimate the lumped
disturbances of the control system within a specified time range. Then, based on disturbance observer, a
time-varying sliding mode control method is designed, which uses hyperbolic tangent function. Finally,
a zero-vibration command smoothing device is designed to suppress liquid sloshing and vibration of flexi-
ble accessories. The numerical simulation results indicate that the control scheme designed in this paper
is feasible and effective, the residual vibration caused by the multi-mode flexible spacecraft during atti-

tude maneuver can be effectively suppressed.
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