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Advances on System Design of Bio-Inspired Flapping Wing MAV "
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Abstract Bio-inspired flapping wing micro air vehicles have excellent aerodynamic performance and flex-
ible flight ability. They have been widely used in both military and civilian markets. Research teams at
home and abroad have made significant progress in developing principle prototypes, flapping wing aero-
dynamics, driving mechanisms, flight control, and other fields. This paper reviews the development and
research progress of the bird-like flapping wing MAVs from the conceptual design methods, driving
mechanism design and optimization, and aerodynamics. Firstly, starting from the conceptual design
method of the flapping wing, the bionic configuration of bird-like flapping wing aircraft has been summa-
rized, and the overall design parameter estimation method has been outlined. Secondly, the application,
advantages, and disadvantages of various configuration crank-link mechanisms in flapping wing drives
have been reviewed. Then, the flapping wing aerodynamic experimental methods and numerical calcula-
tion methods are summarized, and the advantages and disadvantages of different flapping wing aerody-
namic algorithms in terms of calculation cost and accuracy for different application scenarios have been
analyzed. Finally, the design and research status of the bird-like ornithopter system is summarized, and

the prospect of the prototype development process has been put forward.
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Table 1 Typical bionic flapping wing micro air vehicles

A 2R RN m/g b/ecm  f/Hz v/(m/s)

Nano
AVINC 19 16.5 30 6.7

Nano-wing

Hummingbirdm
XW """""" b'eiﬁ'yi ! """ TUDdft 20 28 14 7
X-wing NUS 26 28 15 6
Singlewing  Microbat”)  Caltech 12,5 — 30—
BionicSwift'?")  Festo 42 68 — —
Phoenix"'*! MIT 200 2.4 5
Robird""] CFS 730 112 6 18
Dove % NPU 220 50 4~12 8~12
HIT-Phoenix?”)  HIT 675 230 2~5 2~8
Rosaker600 ~ THU 650 140 7~10 10~15
Folding wing SmartBird®)  Festo 450 107 2 5
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Fig. 1 Biomimetic aerodynamic configuration
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